These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 37457925)

  • 21. Overview of research on additive manufacturing of hydrogel-assisted lab-on-chip platforms for cell engineering applications in photodynamic therapy research.
    Cieślak A; Krakos A; Kulbacka J; Detyna J
    Mikrochim Acta; 2024 Sep; 191(10):608. PubMed ID: 39292358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-based 3D bioprinting technology applied to repair and regeneration of different tissues: A rational proposal for biomedical applications.
    Fang W; Yu Z; Gao G; Yang M; Du X; Wang Y; Fu Q
    Mater Today Bio; 2024 Aug; 27():101135. PubMed ID: 39040222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bibliometric and visualized analysis of hydrogels in organoids research.
    Wang JB; Wu J; Zhang J; Guan LA; Feng HB; Zhu KY; Zhang Y; Zhao WJ; Peng Q; Meng B; Yang S; Sun H; Cheng YD; Zhang L
    Regen Ther; 2024 Mar; 25():395-404. PubMed ID: 38435088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Injectable Decellularized Extracellular Matrix-Based Bio-Ink with Excellent Biocompatibility for Scarless Urethra Repair.
    Fang W; Yang M; Jin Y; Zhang K; Wang Y; Liu M; Wang Y; Yang R; Fu Q
    Gels; 2023 Nov; 9(11):. PubMed ID: 37999003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: Current progress and challenges.
    Fang W; Yang M; Wang L; Li W; Liu M; Jin Y; Wang Y; Yang R; Wang Y; Zhang K; Fu Q
    Int J Bioprint; 2023; 9(5):759. PubMed ID: 37457925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
    Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T
    Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanocomposite bioinks for 3D bioprinting.
    Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC
    Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of 3D printable graphene oxide based bio-ink for cell support and tissue engineering.
    Li J; Liu X; Crook JM; Wallace GG
    Front Bioeng Biotechnol; 2022; 10():994776. PubMed ID: 36394046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immersion bioprinting of hyaluronan and collagen bioink-supported 3D patient-derived brain tumor organoids.
    Clark CC; Yoo KM; Sivakumar H; Strumpf K; Laxton AW; Tatter SB; Strowd RE; Skardal A
    Biomed Mater; 2022 Dec; 18(1):. PubMed ID: 36332268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Embedded Core-Shell 3D Printing (eCS3DP) with Low-Viscosity Polysiloxanes.
    Karyappa R; Goh WH; Hashimoto M
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41520-41530. PubMed ID: 36048005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printing polylactic acid polymer-bioactive glass loaded with bone cement for bone defect in weight-bearing area.
    Ding Y; Liu X; Zhang J; Lv Z; Meng X; Yuan Z; Long T; Wang Y
    Front Bioeng Biotechnol; 2022; 10():947521. PubMed ID: 35957643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Bioprinting of Multi-Material Decellularized Liver Matrix Hydrogel at Physiological Temperatures.
    Khati V; Ramachandraiah H; Pati F; Svahn HA; Gaudenzi G; Russom A
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional Trachea Reconstruction Using 3D-Bioprinted Native-Like Tissue Architecture Based on Designable Tissue-Specific Bioinks.
    Huo Y; Xu Y; Wu X; Gao E; Zhan A; Chen Y; Zhang Y; Hua Y; Swieszkowski W; Zhang YS; Zhou G
    Adv Sci (Weinh); 2022 Oct; 9(29):e2202181. PubMed ID: 35882628
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 37.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.