These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37457944)

  • 1. 3D printability and biochemical analysis of revalorized orange peel waste.
    Tan JD; Lee CP; Foo SY; Tan JCW; Tan SSY; Ong ES; Leo CH; Hashimoto M
    Int J Bioprint; 2023; 9(5):776. PubMed ID: 37457944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Oil Content on the Printability of Coconut Cream.
    Lee CP; Hoo JY; Hashimoto M
    Int J Bioprint; 2021; 7(2):354. PubMed ID: 33997437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in sustainable approaches utilizing orange peel waste to produce highly value-added bioproducts.
    Mohsin A; Hussain MH; Zaman WQ; Mohsin MZ; Zhang J; Liu Z; Tian X; Salim-Ur-Rehman ; Khan IM; Niazi S; Zhuang Y; Guo M
    Crit Rev Biotechnol; 2022 Dec; 42(8):1284-1303. PubMed ID: 34856847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chocolate-based Ink Three-dimensional Printing (Ci3DP).
    Karyappa R; Hashimoto M
    Sci Rep; 2019 Oct; 9(1):14178. PubMed ID: 31578354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preheating of Gelatin Improves its Printability with Transglutaminase in Direct Ink Writing 3D Printing.
    Tan JJY; Lee CP; Hashimoto M
    Int J Bioprint; 2020; 6(4):296. PubMed ID: 33088999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing of milk-based product.
    Lee CP; Karyappa R; Hashimoto M
    RSC Adv; 2020 Aug; 10(50):29821-29828. PubMed ID: 35518232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications.
    Raj R; Dixit AR
    3D Print Addit Manuf; 2023 Aug; 10(4):828-854. PubMed ID: 37609584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a Waterborne Polyurethane-Urea Ink for Direct Ink Writing 3D Printing.
    Vadillo J; Larraza I; Calvo-Correas T; Gabilondo N; Derail C; Eceiza A
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancements in 3D food printing: a comprehensive overview of properties and opportunities.
    Zhang JY; Pandya JK; McClements DJ; Lu J; Kinchla AJ
    Crit Rev Food Sci Nutr; 2022; 62(17):4752-4768. PubMed ID: 33533641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printability of Poly(lactic acid) Ink by Embedded 3D Printing
    Karyappa R; Liu H; Zhu Q; Hashimoto M
    ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced supramolecular design for direct ink writing of soft materials.
    Tang M; Zhong Z; Ke C
    Chem Soc Rev; 2023 Mar; 52(5):1614-1649. PubMed ID: 36779285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular bioeconomy: Life cycle assessment of scaled-up cascading production from orange peel waste under current and future electricity mixes.
    Teigiserova DA; Hamelin L; Tiruta-Barna L; Ahmadi A; Thomsen M
    Sci Total Environ; 2022 Mar; 812():152574. PubMed ID: 34954162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Ink Writing: A 3D Printing Technology for Diverse Materials.
    Saadi MASR; Maguire A; Pottackal NT; Thakur MSH; Ikram MM; Hart AJ; Ajayan PM; Rahman MM
    Adv Mater; 2022 Jul; 34(28):e2108855. PubMed ID: 35246886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct-ink-write printing of hydrogels using dilute inks.
    Li X; Zhang P; Li Q; Wang H; Yang C
    iScience; 2021 Apr; 24(4):102319. PubMed ID: 33870134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan-based electroconductive inks without chemical reaction for cost-effective and versatile 3D printing for electromagnetic interference (EMI) shielding and strain-sensing applications.
    Sanandiya ND; Pai AR; Seyedin S; Tang F; Thomas S; Xie F
    Carbohydr Polym; 2024 Aug; 337():122161. PubMed ID: 38710576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: a review.
    Feng C; Zhang M; Bhandari B
    Crit Rev Food Sci Nutr; 2019; 59(19):3074-3081. PubMed ID: 29856675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing.
    Lu Y; Rai R; Nitin N
    Food Res Int; 2023 Nov; 173(Pt 2):113384. PubMed ID: 37803721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balancing Functionality and Printability: High-Loading Polymer Resins for Direct Ink Writing.
    Legett SA; Torres X; Schmalzer AM; Pacheco A; Stockdale JR; Talley S; Robison T; Labouriau A
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Homogenized Callus Tissue on the Rheological and Mechanical Properties of 3D-Printed Food.
    Dushina E; Popov S; Zlobin A; Martinson E; Paderin N; Vityazev F; Belova K; Litvinets S
    Gels; 2024 Jan; 10(1):. PubMed ID: 38247765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheology and Printability of a Porcelain Clay Paste for DIW 3D Printing of Ceramics with Complex Geometric Structures.
    Wu Y; Lan J; Wu M; Zhou W; Zhou S; Yang H; Zhang M; Li Y
    ACS Omega; 2024 Jun; 9(24):26450-26457. PubMed ID: 38911716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.