These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37458004)

  • 1. Microfluidic device combining hydrodynamic and dielectrophoretic trapping for the controlled contact between single micro-sized objects and application to adhesion assays.
    Lipp C; Koebel L; Loyon R; Bolopion A; Spehner L; Gauthier M; Borg C; Bertsch A; Renaud P
    Lab Chip; 2023 Aug; 23(16):3593-3602. PubMed ID: 37458004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping and releasing of single microparticles and cells in a microfluidic chip.
    Lv D; Zhang X; Xu M; Cao W; Liu X; Deng J; Yang J; Hu N
    Electrophoresis; 2022 Nov; 43(21-22):2165-2174. PubMed ID: 35730632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembled Permanent Micro-Magnets in a Polymer-Based Microfluidic Device for Magnetic Cell Sorting.
    Descamps L; Audry MC; Howard J; Mekkaoui S; Albin C; Barthelemy D; Payen L; Garcia J; Laurenceau E; Le Roy D; Deman AL
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization.
    Zahedi Siani O; Zabetian Targhi M; Sojoodi M; Movahedin M
    Bioprocess Biosyst Eng; 2020 Sep; 43(9):1573-1586. PubMed ID: 32328730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic device performing on flow study of serial cell-cell interactions of two cell populations.
    Duchamp M; Dahoun T; Vaillier C; Arnaud M; Bobisse S; Coukos G; Harari A; Renaud P
    RSC Adv; 2019 Dec; 9(70):41066-41073. PubMed ID: 35540074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Retrieval of Individual Cells from Microfluidic Arrays Combining Dielectrophoretic Force and Directed Hydrodynamic Flow.
    Thiriet PE; Pezoldt J; Gambardella G; Keim K; Deplancke B; Guiducci C
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32244902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multifunctional microfluidic platform for generation, trapping and release of droplets in a double laminar flow.
    Carreras MP; Wang S
    J Biotechnol; 2017 Jun; 251():106-111. PubMed ID: 28450257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamics modelling of microfluidic channel for dielectrophoretic BioMEMS application.
    Low WS; Kadri NA; Abas WA
    ScientificWorldJournal; 2014; 2014():961301. PubMed ID: 25136701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-Printed micro-optofluidic device for chemical fluids and cells detection.
    Cairone F; Davi S; Stella G; Guarino F; Recca G; Cicala G; Bucolo M
    Biomed Microdevices; 2020 May; 22(2):37. PubMed ID: 32419044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics.
    Gao R; Cheng L; Wang S; Bi X; Wang X; Wang R; Chen X; Zha Z; Wang F; Xu X; Zhao G; Yu L
    Talanta; 2020 Jan; 207():120261. PubMed ID: 31594567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles.
    Kwizera EA; Sun M; White AM; Li J; He X
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2043-2063. PubMed ID: 33871975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter screening in microfluidics based hydrodynamic single-cell trapping.
    Deng B; Li XF; Chen DY; You LD; Wang JB; Chen J
    ScientificWorldJournal; 2014; 2014():929163. PubMed ID: 25013872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic approach towards hybridoma generation for cancer immunotherapy.
    Lu YT; Pendharkar GP; Lu CH; Chang CM; Liu CH
    Oncotarget; 2015 Nov; 6(36):38764-76. PubMed ID: 26462149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-cost, high-throughput and rapid-prototyped 3D-integrated dielectrophoretic channels for continuous cell enrichment and separation.
    Faraghat SA; Fatoyinbo HO; Hoettges KF; Hughes MP
    Electrophoresis; 2023 Jun; 44(11-12):947-955. PubMed ID: 36409835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Controllable, Centrifugal-Based Hydrodynamic Microfluidic Chip for Cell-Pairing and Studying Long-Term Communications between Single Cells.
    Li L; Wang H; Huang L; Michael SA; Huang W; Wu H
    Anal Chem; 2019 Dec; 91(24):15908-15914. PubMed ID: 31741379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallelized continuous flow dielectrophoretic separation of DNA.
    Derksen J; Viefhues M
    Electrophoresis; 2023 Jun; 44(11-12):968-977. PubMed ID: 36205619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales].
    Cui J; Liu L; Li D; Piao X
    Se Pu; 2021 Nov; 39(11):1157-1170. PubMed ID: 34677011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable hydrodynamic focusing with dual-neodymium magnet-based microfluidic separation device.
    Al-Zareer M
    Med Biol Eng Comput; 2022 Jan; 60(1):47-60. PubMed ID: 34693497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.