These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37458355)

  • 1. Improving machine learning force fields for molecular dynamics simulations with fine-grained force metrics.
    Wang Z; Wu H; Sun L; He X; Liu Z; Shao B; Wang T; Liu TY
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37458355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The emergence of machine learning force fields in drug design.
    Chen M; Jiang X; Zhang L; Chen X; Wen Y; Gu Z; Li X; Zheng M
    Med Res Rev; 2024 May; 44(3):1147-1182. PubMed ID: 38173298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient interatomic descriptors for accurate machine learning force fields of extended molecules.
    Kabylda A; Vassilev-Galindo V; Chmiela S; Poltavsky I; Tkatchenko A
    Nat Commun; 2023 Jun; 14(1):3562. PubMed ID: 37322039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Euclidean transformer for fast and stable machine learned force fields.
    Frank JT; Unke OT; Müller KR; Chmiela S
    Nat Commun; 2024 Aug; 15(1):6539. PubMed ID: 39107296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force Field Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields under the Microscope.
    Fonseca G; Poltavsky I; Tkatchenko A
    J Chem Theory Comput; 2023 Dec; 19(23):8706-8717. PubMed ID: 38011895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Set of Moment Tensor Potentials for Zirconium with Increasing Complexity.
    Luo Y; Meziere JA; Samolyuk GD; Hart GLW; Daymond MR; Béland LK
    J Chem Theory Comput; 2023 Oct; 19(19):6848-6856. PubMed ID: 37698988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AIMD-Chig: Exploring the conformational space of a 166-atom protein Chignolin with ab initio molecular dynamics.
    Wang T; He X; Li M; Shao B; Liu TY
    Sci Data; 2023 Aug; 10(1):549. PubMed ID: 37607915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural network potential from bispectrum components: A case study on crystalline silicon.
    Yanxon H; Zagaceta D; Wood BC; Zhu Q
    J Chem Phys; 2020 Aug; 153(5):054118. PubMed ID: 32770884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BIGDML-Towards accurate quantum machine learning force fields for materials.
    Sauceda HE; Gálvez-González LE; Chmiela S; Paz-Borbón LO; Müller KR; Tkatchenko A
    Nat Commun; 2022 Jun; 13(1):3733. PubMed ID: 35768400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top-Down Machine Learning of Coarse-Grained Protein Force Fields.
    Navarro C; Majewski M; De Fabritiis G
    J Chem Theory Comput; 2023 Nov; 19(21):7518-7526. PubMed ID: 37874270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards exact molecular dynamics simulations with machine-learned force fields.
    Chmiela S; Sauceda HE; Müller KR; Tkatchenko A
    Nat Commun; 2018 Sep; 9(1):3887. PubMed ID: 30250077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio machine learning of phase space averages.
    Weinreich J; Lemm D; von Rudorff GF; von Lilienfeld OA
    J Chem Phys; 2022 Jul; 157(2):024303. PubMed ID: 35840379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.
    Olson MA; Chaudhury S; Lee MS
    J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving molecular force fields across configurational space by combining supervised and unsupervised machine learning.
    Fonseca G; Poltavsky I; Vassilev-Galindo V; Tkatchenko A
    J Chem Phys; 2021 Mar; 154(12):124102. PubMed ID: 33810678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning of accurate energy-conserving molecular force fields.
    Chmiela S; Tkatchenko A; Sauceda HE; Poltavsky I; Schütt KT; Müller KR
    Sci Adv; 2017 May; 3(5):e1603015. PubMed ID: 28508076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-Classical Trajectory Calculation of Rate Constants Using an Ab Initio Trained Machine Learning Model (aML-MD) with Multifidelity Data.
    Shi Z; Lele AD; Jasper AW; Klippenstein SJ; Ju Y
    J Phys Chem A; 2024 May; 128(17):3449-3457. PubMed ID: 38642065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamic simulations of environment and sequence dependent DNA conformations: the development of the BMS nucleic acid force field and comparison with experimental results.
    Langley DR
    J Biomol Struct Dyn; 1998 Dec; 16(3):487-509. PubMed ID: 10052609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refining Markov state models for conformational dynamics using ensemble-averaged data and time-series trajectories.
    Matsunaga Y; Sugita Y
    J Chem Phys; 2018 Jun; 148(24):241731. PubMed ID: 29960305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.