BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37458425)

  • 1. A Mouse Model for Corneal Neovascularization by Alkali Burn.
    Ammassam Veettil R; Li W; Pflugfelder SC; Koch DD
    J Vis Exp; 2023 Jun; (196):. PubMed ID: 37458425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkali burn versus suture-induced corneal neovascularization in C57BL/6 mice: an overview of two common animal models of corneal neovascularization.
    Giacomini C; Ferrari G; Bignami F; Rama P
    Exp Eye Res; 2014 Apr; 121():1-4. PubMed ID: 24560796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of mouse alkali burn induced-corneal neovascularization by recombinant adenovirus encoding human vasohibin-1.
    Zhou SY; Xie ZL; Xiao O; Yang XR; Heng BC; Sato Y
    Mol Vis; 2010 Jul; 16():1389-98. PubMed ID: 20680097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of genome-wide gene expression in suture- and alkali burn-induced murine corneal neovascularization.
    Jia C; Zhu W; Ren S; Xi H; Li S; Wang Y
    Mol Vis; 2011; 17():2386-99. PubMed ID: 21921991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AIP1 suppresses neovascularization by inhibiting the NOX4-induced NLRP3/NLRP6 imbalance in a murine corneal alkali burn model.
    Li Q; Hua X; Li L; Zhou X; Tian Y; Deng Y; Zhang M; Yuan X; Chi W
    Cell Commun Signal; 2022 May; 20(1):59. PubMed ID: 35524333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient downregulation of microRNA-206 protects alkali burn injury in mouse cornea by regulating connexin 43.
    Li X; Zhou H; Tang W; Guo Q; Zhang Y
    Int J Clin Exp Pathol; 2015; 8(3):2719-27. PubMed ID: 26045777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epithelial Membrane Protein-2 (EMP2) Antibody Blockade Reduces Corneal Neovascularization in an In Vivo Model.
    Sun MM; Chan AM; Law SM; Duarte S; Diaz-Aguilar D; Wadehra M; Gordon LK
    Invest Ophthalmol Vis Sci; 2019 Jan; 60(1):245-254. PubMed ID: 30646013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a novel in vivo corneal fibrosis model in the dog.
    Gronkiewicz KM; Giuliano EA; Kuroki K; Bunyak F; Sharma A; Teixeira LB; Hamm CW; Mohan RR
    Exp Eye Res; 2016 Feb; 143():75-88. PubMed ID: 26450656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of multiple pathogenic pathways by histone deacetylase inhibitor SAHA in a corneal alkali-burn injury model.
    Li X; Zhou Q; Hanus J; Anderson C; Zhang H; Dellinger M; Brekken R; Wang S
    Mol Pharm; 2013 Jan; 10(1):307-18. PubMed ID: 23186311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inflammation, vascularization and goblet cell differences in LSCD: Validating animal models of corneal alkali burns.
    Kethiri AR; Raju E; Bokara KK; Mishra DK; Basu S; Rao CM; Sangwan VS; Singh V
    Exp Eye Res; 2019 Aug; 185():107665. PubMed ID: 31095932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Features of corneal neovascularization and lymphangiogenesis induced by different etiological factors in mice.
    Shi W; Ming C; Liu J; Wang T; Gao H
    Graefes Arch Clin Exp Ophthalmol; 2011 Jan; 249(1):55-67. PubMed ID: 20640436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation.
    Liu Y; Shu Y; Yin L; Xie T; Zou J; Zhan P; Wang Y; Wei T; Zhu L; Yang X; Wang W; Cai J; Li Y; Yao Y; Wang X
    Exp Eye Res; 2021 Jun; 207():108568. PubMed ID: 33839112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safety, penetration and efficacy of topically applied bevacizumab: evaluation of eyedrops in corneal neovascularization after chemical burn.
    Yoeruek E; Ziemssen F; Henke-Fahle S; Tatar O; Tura A; Grisanti S; Bartz-Schmidt KU; Szurman P;
    Acta Ophthalmol; 2008 May; 86(3):322-8. PubMed ID: 17995975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model.
    Kubota M; Shimmura S; Kubota S; Miyashita H; Kato N; Noda K; Ozawa Y; Usui T; Ishida S; Umezawa K; Kurihara T; Tsubota K
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):427-33. PubMed ID: 20847117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diospyros kaki Extract Inhibits Alkali Burn-Induced Corneal Neovascularization.
    Yang SJ; Jo H; Kim KA; Ahn HR; Kang SW; Jung SH
    J Med Food; 2016 Jan; 19(1):106-9. PubMed ID: 26348484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Daphnetin inhibits corneal inflammation and neovascularization on a mouse model of corneal alkali burn.
    Yang T; Wang X; Guo L; Zheng F; Meng C; Zheng Y; Liu G
    Int Immunopharmacol; 2022 Feb; 103():108434. PubMed ID: 34920334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NK1 receptor antagonists as a new treatment for corneal neovascularization.
    Bignami F; Giacomini C; Lorusso A; Aramini A; Rama P; Ferrari G
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6783-94. PubMed ID: 25228541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust model for simultaneously inducing corneal neovascularization and retinal gliosis in the mouse eye.
    Paranthan RR; Bargagna-Mohan P; Lau DL; Mohan R
    Mol Vis; 2011; 17():1901-8. PubMed ID: 21850164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An alkali-burn injury model of corneal neovascularization in the mouse.
    Anderson C; Zhou Q; Wang S
    J Vis Exp; 2014 Apr; (86):. PubMed ID: 24748032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subconjunctival injection of antagomir-21 alleviates corneal neovascularization in a mouse model of alkali-burned cornea.
    Zhang Y; Zhang T; Ma X; Zou J
    Oncotarget; 2017 Feb; 8(7):11797-11808. PubMed ID: 28052006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.