These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37459046)
1. Technical note: Error analysis of material-decomposition-based effective atomic number quantification method. Chen L; Ji X; Wang Z; Chen Y Med Phys; 2024 Jan; 51(1):419-427. PubMed ID: 37459046 [TBL] [Abstract][Full Text] [Related]
2. Deriving effective atomic numbers from DECT based on a parameterization of the ratio of high and low linear attenuation coefficients. Landry G; Seco J; Gaudreault M; Verhaegen F Phys Med Biol; 2013 Oct; 58(19):6851-66. PubMed ID: 24025623 [TBL] [Abstract][Full Text] [Related]
3. Quantification of the volume fraction of fat, water and bone mineral in spongiosa for red marrow dosimetry in molecular radiotherapy by using a dual-energy (SPECT/)CT. Salas-Ramirez M; Lassmann M; Tran-Gia J Z Med Phys; 2022 Nov; 32(4):428-437. PubMed ID: 35292186 [TBL] [Abstract][Full Text] [Related]
4. Research on accuracy of material identification based on photon counting spectral CT. Zhang X; Wang Z; Yun X; Li M; Hu J; Wang C; Wei C J Xray Sci Technol; 2023; 31(4):811-824. PubMed ID: 37334644 [TBL] [Abstract][Full Text] [Related]
5. Mineral quantitative characterization method based on basis material decomposition model by dual-energy computed tomography. Zhi W; Zou J; Zhao J; Xia X J Xray Sci Technol; 2023; 31(2):373-391. PubMed ID: 36641733 [TBL] [Abstract][Full Text] [Related]
6. A simple formulation for deriving effective atomic numbers via electron density calibration from dual-energy CT data in the human body. Saito M; Sagara S Med Phys; 2017 Jun; 44(6):2293-2303. PubMed ID: 28236659 [TBL] [Abstract][Full Text] [Related]
7. Quantitative lung perfusion blood volume using dual energy CT-based effective atomic number (Z Li K; Li Y; Qi Z; Garrett JW; Grist TM; Chen GH Med Phys; 2021 Nov; 48(11):6658-6672. PubMed ID: 34520066 [TBL] [Abstract][Full Text] [Related]
8. Studies on Fundamental Interaction Parameters for Stainless Steel and Titanium Biomaterials Using Flattened and Un-Flattened Megavoltage X-Ray Beams. Rajamanickam T; Muthu S; Murugan P; Pathikonda M; Senthilnathan K; Nambi Raj NA; Ramesh Babu P Asian Pac J Cancer Prev; 2019 Aug; 20(8):2485-2491. PubMed ID: 31450924 [TBL] [Abstract][Full Text] [Related]
9. Accuracy and reproducibility of effective atomic number and electron density measurements from sequential dual energy CT. Schaeffer CJ; Leon SM; Olguin CA; Arreola MM Med Phys; 2021 Jul; 48(7):3525-3539. PubMed ID: 33932301 [TBL] [Abstract][Full Text] [Related]
10. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector. Lee S; Choi YN; Kim HJ Phys Med Biol; 2014 Sep; 59(18):5457-82. PubMed ID: 25164993 [TBL] [Abstract][Full Text] [Related]
11. Fast kVp-switching dual energy contrast-enhanced thorax and cardiac CT: A phantom study on the accuracy of iodine concentration and effective atomic number measurement. Papadakis AE; Damilakis J Med Phys; 2017 Sep; 44(9):4724-4735. PubMed ID: 28658505 [TBL] [Abstract][Full Text] [Related]
12. Image-based spectral distortion correction for photon-counting x-ray detectors. Ding H; Molloi S Med Phys; 2012 Apr; 39(4):1864-76. PubMed ID: 22482608 [TBL] [Abstract][Full Text] [Related]
13. Misinterpretations about CT numbers, material decomposition, and elemental quantification. Salyapongse AM; Szczykutowicz TP Eur Radiol; 2024 Jul; ():. PubMed ID: 39033471 [TBL] [Abstract][Full Text] [Related]
14. Material decomposition with a prototype photon-counting detector CT system: expanding a stoichiometric dual-energy CT method via energy bin optimization and K-edge imaging. Richtsmeier D; Rodesch PA; Iniewski K; Bazalova-Carter M Phys Med Biol; 2024 Feb; 69(5):. PubMed ID: 38306974 [No Abstract] [Full Text] [Related]
15. Accuracy of electron density, effective atomic number, and iodine concentration determination with a dual-layer dual-energy computed tomography system. Hua CH; Shapira N; Merchant TE; Klahr P; Yagil Y Med Phys; 2018 Jun; 45(6):2486-2497. PubMed ID: 29624708 [TBL] [Abstract][Full Text] [Related]
16. Improved dose calculation accuracy for low energy brachytherapy by optimizing dual energy CT imaging protocols for noise reduction using sinogram affirmed iterative reconstruction. Landry G; Gaudreault M; van Elmpt W; Wildberger JE; Verhaegen F Z Med Phys; 2016 Mar; 26(1):75-87. PubMed ID: 26422576 [TBL] [Abstract][Full Text] [Related]
17. Least squares parameter estimation methods for material decomposition with energy discriminating detectors. Le Huy Q; Molloi S Med Phys; 2011 Jan; 38(1):245-55. PubMed ID: 21361193 [TBL] [Abstract][Full Text] [Related]
18. Optimization of the differentiation and quantification of high-Z nanoparticles incorporated in medical devices for CT-guided interventions. Perez JVD; Jacobsen MC; Damasco JA; Melancon A; Huang SY; Layman RR; Melancon MP Med Phys; 2021 Jan; 48(1):300-312. PubMed ID: 33216978 [TBL] [Abstract][Full Text] [Related]
19. Exact dual energy material decomposition from inconsistent rays (MDIR). Maass C; Meyer E; Kachelriess M Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706 [TBL] [Abstract][Full Text] [Related]
20. A prototype spatial-spectral CT system for material decomposition with energy-integrating detectors. Tivnan M; Wang W; Stayman JW Med Phys; 2021 Oct; 48(10):6401-6411. PubMed ID: 33964021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]