These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37459604)
1. Polymer Dielectrics with Outstanding Dielectric Characteristics via Passivation with Oxygen Atoms through C-F Vacancy Carbonylation. Wang TY; Li XF; Jie Z; Liu BX; Zhang G; Liu JB; Dang ZM; Wang ZL Nano Lett; 2023 Sep; 23(18):8808-8815. PubMed ID: 37459604 [TBL] [Abstract][Full Text] [Related]
2. Self-assembled wide bandgap nanocoatings enabled outstanding dielectric characteristics in the sandwich-like structure polymer composites. Wang TY; Li XF; Liu SM; Liu BX; Liang XD; Li S; Zhang GX; Liu JB; Dang ZM Nano Converg; 2022 Dec; 9(1):55. PubMed ID: 36484882 [TBL] [Abstract][Full Text] [Related]
3. Enhancing Dielectric Strength of Epoxy Polymers by Constructing Interface Charge Traps. Yang K; Chen W; Zhao Y; He Y; Chen X; Du B; Yang W; Zhang S; Fu Y ACS Appl Mater Interfaces; 2021 Jun; 13(22):25850-25857. PubMed ID: 34037374 [TBL] [Abstract][Full Text] [Related]
4. Effect of Trap Regulation on Vacuum DC Surface Flashover Characteristics of Nano-ZnO/PI Film. Wu J; Zhang B; Li T; Du Y; Cao W; Yang H Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080680 [TBL] [Abstract][Full Text] [Related]
5. Mechanism Study of Molecular Trap in All-Organic Polystyrene-Based Dielectric Composite. Tang X; Ding C; Yu S; Zhong C; Luo H; Chen S Small; 2024 May; 20(22):e2306034. PubMed ID: 38126675 [TBL] [Abstract][Full Text] [Related]
6. Ultrahigh energy storage performance of all-organic dielectrics at high-temperature by tuning the density and location of traps. Feng M; Feng Y; Zhang C; Zhang T; Chen Q; Chi Q Mater Horiz; 2022 Nov; 9(12):3002-3012. PubMed ID: 36129243 [TBL] [Abstract][Full Text] [Related]
7. Carrier Transport and Molecular Displacement Modulated dc Electrical Breakdown of Polypropylene Nanocomposites. Min D; Yan C; Mi R; Ma C; Huang Y; Li S; Wu Q; Xing Z Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961132 [TBL] [Abstract][Full Text] [Related]
8. Energy Storage Application of All-Organic Polymer Dielectrics: A Review. Yang Z; Yue D; Yao Y; Li J; Chi Q; Chen Q; Min D; Feng Y Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335491 [TBL] [Abstract][Full Text] [Related]
9. Increased Deep Trap Density in Interfacial Engineered Nanocomposite Revealed by Sequential Kelvin Probe Force Microscopy for High Dielectric Energy Storage. Liu K; Zhang F; Liu Z; Song C; Zhang L; Ming W; Yang L; Wang Y; Huang B; Li J Small Methods; 2024 Oct; 8(10):e2301755. PubMed ID: 38716608 [TBL] [Abstract][Full Text] [Related]
10. Improved Insulating Properties of Polymer Dielectric by Constructing Interfacial Composite Coatings. Wang JX; Chen YG; Chen JM; Yin ZH; Chen CS; Li YF; Deng T; Guo XB; Zhu MX Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203912 [TBL] [Abstract][Full Text] [Related]
11. Advances in Polymer Dielectrics with High Energy Storage Performance by Designing Electric Charge Trap Structures. Meng Z; Zhang T; Zhang C; Shang Y; Lei Q; Chi Q Adv Mater; 2024 Dec; 36(52):e2310272. PubMed ID: 38109702 [TBL] [Abstract][Full Text] [Related]
12. Recent Progress and Future Prospects on All-Organic Polymer Dielectrics for Energy Storage Capacitors. Feng QK; Zhong SL; Pei JY; Zhao Y; Zhang DL; Liu DF; Zhang YX; Dang ZM Chem Rev; 2022 Feb; 122(3):3820-3878. PubMed ID: 34939420 [TBL] [Abstract][Full Text] [Related]
13. High-energy-density polymer dielectrics via compositional and structural tailoring for electrical energy storage. Cheng R; Wang Y; Men R; Lei Z; Song J; Li Y; Guo M iScience; 2022 Aug; 25(8):104837. PubMed ID: 35996580 [TBL] [Abstract][Full Text] [Related]
14. Gold Sputtering at the Interfaces: An Easily Operated Strategy for Enhancing the Energy Storage Capability of Laminated Polymer Dielectrics. Du H; Shi Z; Hou Q; Xia S; Yin P; Dastan D; Cui H; Fan R ACS Appl Mater Interfaces; 2023 Apr; 15(13):17103-17112. PubMed ID: 36952632 [TBL] [Abstract][Full Text] [Related]
15. Polymer Dielectrics with Simultaneous Ultrahigh Energy Density and Low Loss. Zhang M; Li B; Wang JJ; Huang HB; Zhang L; Chen LQ Adv Mater; 2021 Jun; 33(22):e2008198. PubMed ID: 33876872 [TBL] [Abstract][Full Text] [Related]
16. Research and Analysis on Enhancement of Surface Flashover Performance of Epoxy Resin Based on Dielectric Barrier Discharge Plasma Fluorination Modification. Chang X; Sui Y; Li C; Yan Z Nanomaterials (Basel); 2024 Aug; 14(17):. PubMed ID: 39269044 [TBL] [Abstract][Full Text] [Related]
17. Improved Energy Storage Performance of All-Organic Composite Dielectric via Constructing Sandwich Structure. Feng M; Zhang T; Song C; Zhang C; Zhang Y; Feng Y; Chi Q; Chen Q; Lei Q Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32877993 [TBL] [Abstract][Full Text] [Related]
18. Charge Injection and Dielectric Characteristics of Polyethylene Terephthalate Based on Semiconductor Electrodes. Liu GY; Sun WF; Lei QQ Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33802110 [TBL] [Abstract][Full Text] [Related]
19. Challenges and Opportunities of Polymer Nanodielectrics for Capacitive Energy Storage. Zhang G; Li Q; Allahyarov E; Li Y; Zhu L ACS Appl Mater Interfaces; 2021 Aug; 13(32):37939-37960. PubMed ID: 34370438 [TBL] [Abstract][Full Text] [Related]
20. Depressing relaxation and conduction loss of polar polymer materials by inserting bulky charge traps for superior energy storage performance in high-pulse energy storage capacitor applications. Zhang M; Zhu B; Zhang X; Liu Z; Wei X; Zhang Z Mater Horiz; 2023 Jul; 10(7):2455-2463. PubMed ID: 37038842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]