These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 37459786)
21. Sensor-free and Sensor-based Heart-on-a-chip Platform: A Review of Design and Applications. Wan H; Gu C; Gan Y; Wei X; Zhu K; Hu N; Wang P Curr Pharm Des; 2018; 24(45):5375-5385. PubMed ID: 30734671 [TBL] [Abstract][Full Text] [Related]
22. Predicting human cardiac QT alterations and pro-arrhythmic effects of compounds with a 3D beating heart-on-chip platform. Visone R; Lozano-Juan F; Marzorati S; Rivolta MW; Pesenti E; Redaelli A; Sassi R; Rasponi M; Occhetta P Toxicol Sci; 2023 Jan; 191(1):47-60. PubMed ID: 36226800 [TBL] [Abstract][Full Text] [Related]
23. Recent developments in organ-on-a-chip technology for cardiovascular disease research. Liu Y; Lin L; Qiao L Anal Bioanal Chem; 2023 Jul; 415(18):3911-3925. PubMed ID: 36867198 [TBL] [Abstract][Full Text] [Related]
24. Heart-on-a-chip based on stem cell biology. Jastrzebska E; Tomecka E; Jesion I Biosens Bioelectron; 2016 Jan; 75():67-81. PubMed ID: 26298640 [TBL] [Abstract][Full Text] [Related]
25. Organ-on-a-chip: A new tool for in vitro research. Yan J; Li Z; Guo J; Liu S; Guo J Biosens Bioelectron; 2022 Nov; 216():114626. PubMed ID: 35969963 [TBL] [Abstract][Full Text] [Related]
26. Recent advances in lung-on-a-chip models. Francis I; Shrestha J; Paudel KR; Hansbro PM; Warkiani ME; Saha SC Drug Discov Today; 2022 Sep; 27(9):2593-2602. PubMed ID: 35724916 [TBL] [Abstract][Full Text] [Related]
27. Advances in reconstructing intestinal functionalities in vitro: From two/three dimensional-cell culture platforms to human intestine-on-a-chip. Wang L; Wu J; Chen J; Dou W; Zhao Q; Han J; Liu J; Su W; Li A; Liu P; An Z; Xu C; Sun Y Talanta; 2021 May; 226():122097. PubMed ID: 33676654 [TBL] [Abstract][Full Text] [Related]
28. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms. Vera D; García-Díaz M; Torras N; Álvarez M; Villa R; Martinez E ACS Appl Mater Interfaces; 2021 Mar; 13(12):13920-13933. PubMed ID: 33739812 [TBL] [Abstract][Full Text] [Related]
29. Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Amirifar L; Shamloo A; Nasiri R; de Barros NR; Wang ZZ; Unluturk BD; Libanori A; Ievglevskyi O; Diltemiz SE; Sances S; Balasingham I; Seidlits SK; Ashammakhi N Biomaterials; 2022 Jun; 285():121531. PubMed ID: 35533441 [TBL] [Abstract][Full Text] [Related]
31. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Skardal A; Shupe T; Atala A Drug Discov Today; 2016 Sep; 21(9):1399-1411. PubMed ID: 27422270 [TBL] [Abstract][Full Text] [Related]
32. The role of tissue engineering and biomaterials in cardiac regenerative medicine. Zhao Y; Feric NT; Thavandiran N; Nunes SS; Radisic M Can J Cardiol; 2014 Nov; 30(11):1307-22. PubMed ID: 25442432 [TBL] [Abstract][Full Text] [Related]
33. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies. Mohammadi MH; Heidary Araghi B; Beydaghi V; Geraili A; Moradi F; Jafari P; Janmaleki M; Valente KP; Akbari M; Sanati-Nezhad A Adv Healthc Mater; 2016 Oct; 5(19):2459-2480. PubMed ID: 27548388 [TBL] [Abstract][Full Text] [Related]
34. A thermoplastic microfluidic microphysiological system to recapitulate hepatic function and multicellular interactions. Bale SS; Manoppo A; Thompson R; Markoski A; Coppeta J; Cain B; Haroutunian N; Newlin V; Spencer A; Azizgolshani H; Lu M; Gosset J; Keegan P; Charest JL Biotechnol Bioeng; 2019 Dec; 116(12):3409-3420. PubMed ID: 30963546 [TBL] [Abstract][Full Text] [Related]
35. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. Barata D; van Blitterswijk C; Habibovic P Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719 [TBL] [Abstract][Full Text] [Related]
36. Design and fabrication of an integrated heart-on-a-chip platform for construction of cardiac tissue from human iPSC-derived cardiomyocytes and in situ evaluation of physiological function. Zhang F; Qu KY; Zhou B; Luo Y; Zhu Z; Pan DJ; Cui C; Zhu Y; Chen ML; Huang NP Biosens Bioelectron; 2021 May; 179():113080. PubMed ID: 33639347 [TBL] [Abstract][Full Text] [Related]
37. Organs-on-chips technologies - A guide from disease models to opportunities for drug development. Monteduro AG; Rizzato S; Caragnano G; Trapani A; Giannelli G; Maruccio G Biosens Bioelectron; 2023 Jul; 231():115271. PubMed ID: 37060819 [TBL] [Abstract][Full Text] [Related]
39. Combined Effects of Electric Stimulation and Microgrooves in Cardiac Tissue-on-a-Chip for Drug Screening. Ren L; Zhou X; Nasiri R; Fang J; Jiang X; Wang C; Qu M; Ling H; Chen Y; Xue Y; Hartel MC; Tebon P; Zhang S; Kim HJ; Yuan X; Shamloo A; Dokmeci MR; Li S; Khademhosseini A; Ahadian S; Sun W Small Methods; 2020 Oct; 4(10):. PubMed ID: 34423115 [TBL] [Abstract][Full Text] [Related]
40. Lung on a Chip for Drug Screening and Design. Kızılkurtlu AA; Polat T; Aydın GB; Akpek A Curr Pharm Des; 2018; 24(45):5386-5396. PubMed ID: 30734673 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]