These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37459955)
1. Analysis of N Li J; Wang J; Pang Q; Yan X Plant Sci; 2023 Oct; 335():111794. PubMed ID: 37459955 [TBL] [Abstract][Full Text] [Related]
2. Unique Features of the m Li J; Pang Q; Yan X Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511417 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet. Geng G; Lv C; Stevanato P; Li R; Liu H; Yu L; Wang Y Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31775274 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Sugar Beet to Salt Stress of Different Durations. Cui J; Li J; Dai C; Li L Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076993 [TBL] [Abstract][Full Text] [Related]
5. Genome-Wide Identification of Na Wu GQ; Wang JL; Li SJ Genes (Basel); 2019 May; 10(5):. PubMed ID: 31137880 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide sequence identification and expression analysis of Cui J; Liu J; Li J; Cheng D; Dai C PeerJ; 2022; 10():e12719. PubMed ID: 35036097 [TBL] [Abstract][Full Text] [Related]
7. Salt stress vs. salt shock - the case of sugar beet and its halophytic ancestor. Skorupa M; Gołębiewski M; Kurnik K; Niedojadło J; Kęsy J; Klamkowski K; Wójcik K; Treder W; Tretyn A; Tyburski J BMC Plant Biol; 2019 Feb; 19(1):57. PubMed ID: 30727960 [TBL] [Abstract][Full Text] [Related]
8. Whole-Transcriptome RNA Sequencing Reveals the Global Molecular Responses and CeRNA Regulatory Network of mRNAs, lncRNAs, miRNAs and circRNAs in Response to Salt Stress in Sugar Beet ( Li J; Cui J; Dai C; Liu T; Cheng D; Luo C Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396637 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. Zou C; Liu D; Wu P; Wang Y; Gai Z; Liu L; Yang F; Li C; Guo G Plant Mol Biol; 2020 Apr; 102(6):645-657. PubMed ID: 32040759 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. Liu L; Wang B; Liu D; Zou C; Wu P; Wang Z; Wang Y; Li C BMC Plant Biol; 2020 Apr; 20(1):138. PubMed ID: 32245415 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide identification, phylogenetic classification of histone acetyltransferase genes, and their expression analysis in sugar beet (Beta vulgaris L.) under salt stress. Yolcu S; Skorupa M; Uras ME; Mazur J; Ozyiğit II Planta; 2024 Mar; 259(4):85. PubMed ID: 38448714 [TBL] [Abstract][Full Text] [Related]
12. Salt stress and salt shock differently affect DNA methylation in salt-responsive genes in sugar beet and its wild, halophytic ancestor. Skorupa M; Szczepanek J; Mazur J; Domagalski K; Tretyn A; Tyburski J PLoS One; 2021; 16(5):e0251675. PubMed ID: 34043649 [TBL] [Abstract][Full Text] [Related]
13. iTRAQ-Based Comparative Proteomic Analysis Provides Insights into Molecular Mechanisms of Salt Tolerance in Sugar Beet ( Wu GQ; Wang JL; Feng RJ; Li SJ; Wang CM Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518064 [TBL] [Abstract][Full Text] [Related]
14. Integration of mRNA and miRNA analysis reveals the molecular mechanisms of sugar beet (Beta vulgaris L.) response to salt stress. Zhang Z; Wang L; Chen W; Fu Z; Zhao S; E Y; Zhang H; Zhang B; Sun M; Han P; Chang Y; Tang K; Gao Y; Zhang H; Li X; Zheng W Sci Rep; 2023 Dec; 13(1):22074. PubMed ID: 38086906 [TBL] [Abstract][Full Text] [Related]
15. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance. Wang Y; Stevanato P; Lv C; Li R; Geng G J Agric Food Chem; 2019 May; 67(21):6056-6073. PubMed ID: 31070911 [TBL] [Abstract][Full Text] [Related]
16. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14. Lv X; Jin Y; Wang Y Comput Biol Chem; 2018 Aug; 75():1-10. PubMed ID: 29705503 [TBL] [Abstract][Full Text] [Related]
17. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet. Hossain MS; ElSayed AI; Moore M; Dietz KJ J Exp Bot; 2017 Feb; 68(5):1283-1298. PubMed ID: 28338762 [TBL] [Abstract][Full Text] [Related]
18. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress. Yu B; Li J; Koh J; Dufresne C; Yang N; Qi S; Zhang Y; Ma C; Duong BV; Chen S; Li H J Proteomics; 2016 Jun; 143():286-297. PubMed ID: 27233743 [TBL] [Abstract][Full Text] [Related]
19. Computational identification and characterization of conserved miRNAs and their target genes in beet (Beta vulgaris). Li JL; Cui J; Cheng DY Genet Mol Res; 2015 Aug; 14(3):9103-8. PubMed ID: 26345842 [TBL] [Abstract][Full Text] [Related]
20. Genome-Wide Identification of GRAS Transcription Factors and Their Functional Analysis in Salt Stress Response in Sugar Beet. Hao X; Gong Y; Chen S; Ma C; Duanmu H Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]