BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 37460019)

  • 1. A review on modelling of thermochemical processing of biomass for biofuels and prospects of artificial intelligence-enhanced approaches.
    Sakheta A; Nayak R; O'Hara I; Ramirez J
    Bioresour Technol; 2023 Oct; 386():129490. PubMed ID: 37460019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances of thermochemical conversion processes for biorefinery.
    Seo MW; Lee SH; Nam H; Lee D; Tokmurzin D; Wang S; Park YK
    Bioresour Technol; 2022 Jan; 343():126109. PubMed ID: 34637907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable valorization of algae biomass via thermochemical processing route: An overview.
    Ayub HMU; Ahmed A; Lam SS; Lee J; Show PL; Park YK
    Bioresour Technol; 2022 Jan; 344(Pt B):126399. PubMed ID: 34822981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes.
    Ubando AT; Rivera DRT; Chen WH; Culaba AB
    Bioresour Technol; 2019 Nov; 291():121837. PubMed ID: 31353166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals.
    Shen Y; Jarboe L; Brown R; Wen Z
    Biotechnol Adv; 2015 Dec; 33(8):1799-813. PubMed ID: 26492814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermochemical conversion of microalgal biomass into biofuels: a review.
    Chen WH; Lin BJ; Huang MY; Chang JS
    Bioresour Technol; 2015 May; 184():314-327. PubMed ID: 25479688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of thermal-chemical conversion of lignocellulosic biomass in China.
    Ma L; Wang T; Liu Q; Zhang X; Ma W; Zhang Q
    Biotechnol Adv; 2012; 30(4):859-73. PubMed ID: 22306330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals.
    Kim JY; Lee HW; Lee SM; Jae J; Park YK
    Bioresour Technol; 2019 May; 279():373-384. PubMed ID: 30685133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable processing of algal biomass for a comprehensive biorefinery.
    Javed MU; Mukhtar H; Hayat MT; Rashid U; Mumtaz MW; Ngamcharussrivichai C
    J Biotechnol; 2022 Jun; 352():47-58. PubMed ID: 35613647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals.
    Pang S
    Biotechnol Adv; 2019; 37(4):589-597. PubMed ID: 30447327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging trends and advances in valorization of lignocellulosic biomass to biofuels.
    Velvizhi G; Jacqueline PJ; Shetti NP; K L; Mohanakrishna G; Aminabhavi TM
    J Environ Manage; 2023 Nov; 345():118527. PubMed ID: 37429092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pilot-scale co-processing of lignocellulosic biomass, algae, shellfish waste via thermochemical approach: Recent progress and future directions.
    Yek PNY; Wan Mahari WA; Kong SH; Foong SY; Peng W; Ting H; Liew RK; Xia C; Sonne C; Tabatabaei M; Almomani F; Aghbashlo M; Lam SS
    Bioresour Technol; 2022 Mar; 347():126687. PubMed ID: 35007740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence methods for modeling gasification of waste biomass: a review.
    Alfarra F; Ozcan HK; Cihan P; Ongen A; Guvenc SY; Ciner MN
    Environ Monit Assess; 2024 Feb; 196(3):309. PubMed ID: 38407668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in thermochemical methods for the conversion of algal biomass to energy.
    Das P; V P C; Mathimani T; Pugazhendhi A
    Sci Total Environ; 2021 Apr; 766():144608. PubMed ID: 33421791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart sustainable biorefineries for lignocellulosic biomass.
    Culaba AB; Mayol AP; San Juan JLG; Vinoya CL; Concepcion RS; Bandala AA; Vicerra RRP; Ubando AT; Chen WH; Chang JS
    Bioresour Technol; 2022 Jan; 344(Pt B):126215. PubMed ID: 34728355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive review on the factors affecting thermochemical conversion efficiency of algal biomass to energy.
    Das P; V P C; Mathimani T; Pugazhendhi A
    Sci Total Environ; 2021 Apr; 766():144213. PubMed ID: 33418252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of biofuels from biomass: Predicting the energy employing artificial intelligence modelling.
    Meena M; Shubham S; Paritosh K; Pareek N; Vivekanand V
    Bioresour Technol; 2021 Nov; 340():125642. PubMed ID: 34315128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy.
    Akbarian A; Andooz A; Kowsari E; Ramakrishna S; Asgari S; Cheshmeh ZA
    Bioresour Technol; 2022 Oct; 362():127774. PubMed ID: 35964915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of physical and thermal pretreatment of lignocellulosic biomass on biohydrogen production by thermochemical route: A critical review.
    Singh R; Kumar R; Sarangi PK; Kovalev AA; Vivekanand V
    Bioresour Technol; 2023 Feb; 369():128458. PubMed ID: 36503099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging technologies for conversion of sustainable algal biomass into value-added products: A state-of-the-art review.
    Zhang K; Zhang F; Wu YR
    Sci Total Environ; 2021 Aug; 784():147024. PubMed ID: 33895504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.