These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37460624)

  • 1. Comparative Study of Chromium Phytoremediation by Two Aquatic Macrophytes.
    Sharma K; Saxena P; Kumari A
    Bull Environ Contam Toxicol; 2023 Jul; 111(1):16. PubMed ID: 37460624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation potential of
    Tabinda AB; Irfan R; Yasar A; Iqbal A; Mahmood A
    Environ Technol; 2020 May; 41(12):1514-1519. PubMed ID: 30355050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce (
    Şentürk İ; Eyceyurt Divarcı NS; Öztürk M
    Int J Phytoremediation; 2023; 25(5):550-561. PubMed ID: 35786212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of common macrophytes for phytoremediation of hexavalent Cr prevalent in chromite mining areas.
    Das M; Bramhanand PS; Laxminarayana K; Roy Chowdhury S
    Int J Phytoremediation; 2022; 24(8):787-795. PubMed ID: 34554031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of textile effluents with
    Tabinda AB; Arif RA; Yasar A; Baqir M; Rasheed R; Mahmood A; Iqbal A
    Int J Phytoremediation; 2019; 21(10):939-943. PubMed ID: 31016996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of Cr(III) and Cr(VI) removal from water by two floating macrophytes.
    Maine MA; Hadad HR; Sánchez G; Caffaratti S; Pedro MC
    Int J Phytoremediation; 2016; 18(3):261-8. PubMed ID: 26366503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance and efficiency services for the removal of hexavalent chromium from water by common macrophytes.
    Das M; Bramhanand PS; Laxminarayana K
    Int J Phytoremediation; 2021; 23(10):1095-1103. PubMed ID: 33567905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes.
    Sinha S; Saxena R; Singh S
    Chemosphere; 2005 Feb; 58(5):595-604. PubMed ID: 15620753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L.
    Abdallah MA
    Environ Technol; 2012; 33(13-15):1609-14. PubMed ID: 22988621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.
    Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN
    Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead phytoremediation potentials of four aquatic macrophytes under hydroponic cultivation.
    Das S; Das A; Mazumder PET; Paul R; Das S
    Int J Phytoremediation; 2021; 23(12):1279-1288. PubMed ID: 33678068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of plant growth attributes, bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent.
    Kumar V; Singh J; Chopra AK
    Int J Phytoremediation; 2018 Apr; 20(5):507-521. PubMed ID: 29608378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation potential of
    Rizvi ZF; Jamal M; Parveen H; Sarfraz W; Nasreen S; Khalid N; Muzammil K
    Heliyon; 2024 Apr; 10(7):e29078. PubMed ID: 38601583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pistia stratiotes in the phytoremediation and post-treatment of domestic sewage.
    Schwantes D; Gonçalves AC; Schiller ADP; Manfrin J; Campagnolo MA; Somavilla E
    Int J Phytoremediation; 2019; 21(7):714-723. PubMed ID: 30656947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L.
    Mahmud JA; Hasanuzzaman M; Nahar K; Rahman A; Hossain MS; Fujita M
    Ecotoxicol Environ Saf; 2017 Oct; 144():216-226. PubMed ID: 28624590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the phytoremediation potential of dominant plant species growing in a chromium salt-producing factory wasteland, China.
    Yan X; Wang J; Song H; Peng Y; Zuo S; Gao T; Duan X; Qin D; Dong J
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7657-7671. PubMed ID: 31889268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.
    Lakra KC; Lal B; Banerjee TK
    Int J Phytoremediation; 2017 Jun; 19(6):530-536. PubMed ID: 27936868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can we use Cd-contaminated macrophytes for biogas production?
    Fernandes KD; Cañote SJB; Ribeiro EM; Thiago Filho GL; Fonseca AL
    Environ Sci Pollut Res Int; 2019 Sep; 26(27):27620-27630. PubMed ID: 29948672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium and chromium removal kinetics from solution by two aquatic macrophytes.
    Suñe N; Sánchez G; Caffaratti S; Maine MA
    Environ Pollut; 2007 Jan; 145(2):467-73. PubMed ID: 16815611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.