These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 37460915)
1. Comparative verification of control methodology for robotic interventional neuroradiology procedures. Jackson B; Crinnion W; De Iturrate Reyzabal M; Robertshaw H; Bergeles C; Rhode K; Booth T Int J Comput Assist Radiol Surg; 2023 Nov; 18(11):1977-1986. PubMed ID: 37460915 [TBL] [Abstract][Full Text] [Related]
2. Learning-based endovascular navigation through the use of non-rigid registration for collaborative robotic catheterization. Chi W; Liu J; Rafii-Tari H; Riga C; Bicknell C; Yang GZ Int J Comput Assist Radiol Surg; 2018 Jun; 13(6):855-864. PubMed ID: 29651714 [TBL] [Abstract][Full Text] [Related]
3. Position-based dynamics simulator of vessel deformations for path planning in robotic endovascular catheterization. Li Z; Manzionna E; Monizzi G; Mastrangelo A; Mancini ME; Andreini D; Dankelman J; De Momi E Med Eng Phys; 2022 Dec; 110():103920. PubMed ID: 36564143 [TBL] [Abstract][Full Text] [Related]
4. Performance Evaluation of a Miniature and Disposable Endovascular Robotic Device. Vidal V; Bargellini I; Bent C; Kee S; Little M; O'Sullivan G Cardiovasc Intervent Radiol; 2024 Apr; 47(4):503-507. PubMed ID: 38512351 [TBL] [Abstract][Full Text] [Related]
6. Current State of Robotics in Interventional Radiology. Najafi G; Kreiser K; Abdelaziz MEMK; Hamady MS Cardiovasc Intervent Radiol; 2023 May; 46(5):549-561. PubMed ID: 37002481 [TBL] [Abstract][Full Text] [Related]
7. Autonomous navigation of catheters and guidewires in mechanical thrombectomy using inverse reinforcement learning. Robertshaw H; Karstensen L; Jackson B; Granados A; Booth TC Int J Comput Assist Radiol Surg; 2024 Aug; 19(8):1569-1578. PubMed ID: 38884893 [TBL] [Abstract][Full Text] [Related]
8. A cooperation of catheters and guidewires-based novel remote-controlled vascular interventional robot. Bao X; Guo S; Xiao N; Li Y; Yang C; Jiang Y Biomed Microdevices; 2018 Feb; 20(1):20. PubMed ID: 29460178 [TBL] [Abstract][Full Text] [Related]
9. Improved precise guidewire delivery of a cardiovascular interventional surgery robot based on admittance control. Wang S; Liu Z; Cao Y; Zhang L; Xie L Int J Comput Assist Radiol Surg; 2024 Feb; 19(2):209-221. PubMed ID: 37787938 [TBL] [Abstract][Full Text] [Related]
10. A novel catheter interaction simulating method for virtual reality interventional training systems. Shi P; Guo S; Jin X; Hirata H; Tamiya T; Kawanishi M Med Biol Eng Comput; 2023 Mar; 61(3):685-697. PubMed ID: 36585560 [TBL] [Abstract][Full Text] [Related]
11. Robotic Interventional Neuroradiology: Progress, Challenges, and Future Prospects. Ning S; Chautems C; Kim Y; Rice H; Hanning U; Al Kasab S; Meyer L; Psychogios M; Zaidat OO; Hassan AE; Masoud HE; Mujanovic A; Kaesmacher J; Dhillon PS; Ma A; Kaliaev A; Nguyen TN; Abdalkader M Semin Neurol; 2023 Jun; 43(3):432-438. PubMed ID: 37562456 [TBL] [Abstract][Full Text] [Related]
12. The role of robotic endovascular catheters in fenestrated stent grafting. Riga CV; Cheshire NJ; Hamady MS; Bicknell CD J Vasc Surg; 2010 Apr; 51(4):810-9; discussion 819-20. PubMed ID: 20347674 [TBL] [Abstract][Full Text] [Related]
13. Current and emerging robot-assisted endovascular catheterization technologies: a review. Rafii-Tari H; Payne CJ; Yang GZ Ann Biomed Eng; 2014 Apr; 42(4):697-715. PubMed ID: 24281653 [TBL] [Abstract][Full Text] [Related]
14. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study. Schwein A; Kramer B; Chinnadurai P; Virmani N; Walker S; O'Malley M; Lumsden AB; Bismuth J J Vasc Surg; 2018 Apr; 67(4):1274-1281. PubMed ID: 28583735 [TBL] [Abstract][Full Text] [Related]
15. [Research on real-time detection system of catheter delivering force in vascular interventional robots]. Li H; Zhou H; Zhao Y; Zhang J; Zhang T Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Apr; 39(2):359-369. PubMed ID: 35523558 [TBL] [Abstract][Full Text] [Related]
16. Advanced catheter technology: is this the answer to overcoming the long learning curve in complex endovascular procedures. Riga CV; Bicknell CD; Sidhu R; Cochennec F; Normahani P; Chadha P; Kashef E; Hamady M; Cheshire NJ Eur J Vasc Endovasc Surg; 2011 Oct; 42(4):531-8. PubMed ID: 21388839 [TBL] [Abstract][Full Text] [Related]
17. A multimodal user interface for touchless control of robotic ultrasound. Schreiter J; Mielke T; Schott D; Thormann M; Omari J; Pech M; Hansen C Int J Comput Assist Radiol Surg; 2023 Aug; 18(8):1429-1436. PubMed ID: 36565368 [TBL] [Abstract][Full Text] [Related]
18. Overcoming Barriers and Advancements in Endovascular Robotics: A Review of Systems and Developments. Morag E; Cornelis FH; Weisz G; Gandhi R Tech Vasc Interv Radiol; 2023 Sep; 26(3):100918. PubMed ID: 38071030 [TBL] [Abstract][Full Text] [Related]
19. Comparison of manual versus robot-assisted contralateral gate cannulation in patients undergoing endovascular aneurysm repair. Cheung S; Rahman R; Bicknell C; Stoyanov D; Chang PL; Li M; Rolls A; Desender L; Van Herzeele I; Hamady M; Riga C Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2071-2078. PubMed ID: 33070273 [TBL] [Abstract][Full Text] [Related]
20. Transcarotid access for remote robotic endovascular neurointerventions: a cadaveric proof-of-concept study. Berczeli M; Chinnadurai P; Legeza PT; Britz GW; Lumsden AB Neurosurg Focus; 2022 Jan; 52(1):E18. PubMed ID: 34973671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]