These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37461415)

  • 1. Reconstructing Cardiac Electrical Excitations from Optical Mapping Recordings.
    Marcotte CD; Hoffman MJ; Fenton FH; Cherry EM
    ArXiv; 2023 Sep; ():. PubMed ID: 37461415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing cardiac electrical excitations from optical mapping recordings.
    Marcotte CD; Hoffman MJ; Fenton FH; Cherry EM
    Chaos; 2023 Sep; 33(9):. PubMed ID: 37756611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust data assimilation with noise: Applications to cardiac dynamics.
    Marcotte CD; Fenton FH; Hoffman MJ; Cherry EM
    Chaos; 2021 Jan; 31(1):013118. PubMed ID: 33754752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of model error on cardiac electrical wave state reconstruction using data assimilation.
    LaVigne NS; Holt N; Hoffman MJ; Cherry EM
    Chaos; 2017 Sep; 27(9):093911. PubMed ID: 28964160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kalman filter data assimilation: targeting observations and parameter estimation.
    Bellsky T; Kostelich EJ; Mahalov A
    Chaos; 2014 Jun; 24(2):024406. PubMed ID: 24985460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of a data-assimilation system for reconstructing three-dimensional cardiac electrical dynamics.
    Hoffman MJ; Cherry EM
    Philos Trans A Math Phys Eng Sci; 2020 Jun; 378(2173):20190388. PubMed ID: 32448069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing three-dimensional reentrant cardiac electrical wave dynamics using data assimilation.
    Hoffman MJ; LaVigne NS; Scorse ST; Fenton FH; Cherry EM
    Chaos; 2016 Jan; 26(1):013107. PubMed ID: 26826859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Multiple Data Assimilation Techniques in Groundwater Contaminant Transport Modeling.
    Rajib AI; Assumaning GA; Chang SY; Addai EB
    Water Environ Res; 2017 Nov; 89(11):1952-1960. PubMed ID: 29080564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient continuous data assimilation algorithm for the Sabra shell model of turbulence.
    Chen N; Li Y; Lunasin E
    Chaos; 2021 Oct; 31(10):103123. PubMed ID: 34717341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data Assimilation in the Solar Wind: Challenges and First Results.
    Lang M; Browne P; van Leeuwen PJ; Owens M
    Space Weather; 2017 Nov; 15(11):1490-1510. PubMed ID: 29398983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data Assimilation by Stochastic Ensemble Kalman Filtering to Enhance Turbulent Cardiovascular Flow Data From Under-Resolved Observations.
    De Marinis D; Obrist D
    Front Cardiovasc Med; 2021; 8():742110. PubMed ID: 34796213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell Fate Forecasting: A Data-Assimilation Approach to Predict Epithelial-Mesenchymal Transition.
    Mendez MJ; Hoffman MJ; Cherry EM; Lemmon CA; Weinberg SH
    Biophys J; 2020 Apr; 118(7):1749-1768. PubMed ID: 32101715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A particle flow filter for high-dimensional system applications.
    Hu CC; van Leeuwen PJ
    Q J R Meteorol Soc; 2021 Apr; 147(737):2352-2374. PubMed ID: 34262229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pedestrian Positioning Using an Enhanced Ensemble Transform Kalman Filter.
    Sung K
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an ensemble Kalman filter data assimilation system for the Venusian atmosphere.
    Sugimoto N; Yamazaki A; Kouyama T; Kashimura H; Enomoto T; Takagi M
    Sci Rep; 2017 Aug; 7(1):9321. PubMed ID: 28839201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials.
    Wang L; Zhang H; Wong KC; Liu H; Shi P
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):296-315. PubMed ID: 19535316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of endocardial potentials and activation sequences from intracavitary probe measurements. Localization of pacing sites and effects of myocardial structure.
    Khoury DS; Taccardi B; Lux RL; Ershler PR; Rudy Y
    Circulation; 1995 Feb; 91(3):845-63. PubMed ID: 7828314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpretable physiological forecasting in the ICU using constrained data assimilation and electronic health record data.
    Albers D; Sirlanci M; Levine M; Claassen J; Nigoghossian C; Hripcsak G
    J Biomed Inform; 2023 Sep; 145():104477. PubMed ID: 37604272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mis-specified time-correlated model error in the (ensemble) Kalman Smoother.
    Ren H; Amezcua J; van Leeuwen PJ
    Q J R Meteorol Soc; 2021 Jan; 147(734):573-588. PubMed ID: 33867588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Quest for Model Uncertainty Quantification: A Hybrid Ensemble and Variational Data Assimilation Framework.
    Abbaszadeh P; Moradkhani H; Daescu DN
    Water Resour Res; 2019 Mar; 55(3):2407-2431. PubMed ID: 31217643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.