BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37461506)

  • 1. Spontaneous single-nucleotide substitutions and microsatellite mutations have distinct distributions of fitness effects.
    Plavskin Y; de Biase MS; Ziv N; Janská L; Zhu YO; Hall DW; Schwarz RF; Tranchina D; Siegal ML
    bioRxiv; 2024 Jun; ():. PubMed ID: 37461506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous single-nucleotide substitutions and microsatellite mutations have distinct distributions of fitness effects.
    Plavskin Y; de Biase MS; Ziv N; Janská L; Zhu YO; Hall DW; Schwarz RF; Tranchina D; Siegal ML
    PLoS Biol; 2024 Jul; 22(7):e3002698. PubMed ID: 38950062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational Landscape of Spontaneous Base Substitutions and Small Indels in Experimental
    Konrad A; Brady MJ; Bergthorsson U; Katju V
    Genetics; 2019 Jul; 212(3):837-854. PubMed ID: 31110155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation.
    Kinsler G; Geiler-Samerotte K; Petrov DA
    Elife; 2020 Dec; 9():. PubMed ID: 33263280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast.
    Lang GI; Parsons L; Gammie AE
    G3 (Bethesda); 2013 Sep; 3(9):1453-65. PubMed ID: 23821616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Fitness Effects of Spontaneous Mutations Nearly Unseen by Selection in a Bacterium with Multiple Chromosomes.
    Dillon MM; Cooper VS
    Genetics; 2016 Nov; 204(3):1225-1238. PubMed ID: 27672096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fates of mutant lineages and the distribution of fitness effects of beneficial mutations in laboratory budding yeast populations.
    Frenkel EM; Good BH; Desai MM
    Genetics; 2014 Apr; 196(4):1217-26. PubMed ID: 24514901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae.
    Zeyl C; DeVisser JA
    Genetics; 2001 Jan; 157(1):53-61. PubMed ID: 11139491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating Mutational Load Is Not Due to Synergistic Epistasis or Mutator Alleles in Mutation Accumulation Lines of Yeast.
    Jasmin JN; Lenormand T
    Genetics; 2016 Feb; 202(2):751-63. PubMed ID: 26596348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitness is strongly influenced by rare mutations of large effect in a microbial mutation accumulation experiment.
    Heilbron K; Toll-Riera M; Kojadinovic M; MacLean RC
    Genetics; 2014 Jul; 197(3):981-90. PubMed ID: 24814466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the Fitness Effects of New Mutations in the Wild Yeast Saccharomyces paradoxus.
    Koufopanou V; Lomas S; Tsai IJ; Burt A
    Genome Biol Evol; 2015 Jun; 7(7):1887-95. PubMed ID: 26085542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of fitness effects caused by single-nucleotide substitutions in bacteriophage f1.
    Peris JB; Davis P; Cuevas JM; Nebot MR; Sanjuán R
    Genetics; 2010 Jun; 185(2):603-9. PubMed ID: 20382832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring the distribution of fitness effects of spontaneous mutations in Chlamydomonas reinhardtii.
    Böndel KB; Kraemer SA; Samuels T; McClean D; Lachapelle J; Ness RW; Colegrave N; Keightley PD
    PLoS Biol; 2019 Jun; 17(6):e3000192. PubMed ID: 31242179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distribution of epistasis on simple fitness landscapes.
    Fraïsse C; Welch JJ
    Biol Lett; 2019 Apr; 15(4):20180881. PubMed ID: 31014191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trajectory and uniqueness of mutational signatures in yeast mutators.
    Loeillet S; Herzog M; Puddu F; Legoix P; Baulande S; Jackson SP; Nicolas AG
    Proc Natl Acad Sci U S A; 2020 Oct; 117(40):24947-24956. PubMed ID: 32968016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clusters of nucleotide substitutions and insertion/deletion mutations are associated with repeat sequences.
    McDonald MJ; Wang WC; Huang HD; Leu JY
    PLoS Biol; 2011 Jun; 9(6):e1000622. PubMed ID: 21697975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae.
    Wloch DM; Szafraniec K; Borts RH; Korona R
    Genetics; 2001 Oct; 159(2):441-52. PubMed ID: 11606524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence context of indel mutations and their effect on protein evolution in a bacterial endosymbiont.
    Williams LE; Wernegreen JJ
    Genome Biol Evol; 2013; 5(3):599-605. PubMed ID: 23475937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles of dengue virus evolvability derived from genotype-fitness maps in human and mosquito cells.
    Dolan PT; Taguwa S; Rangel MA; Acevedo A; Hagai T; Andino R; Frydman J
    Elife; 2021 Jan; 10():. PubMed ID: 33491648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational robustness changes during long-term adaptation in laboratory budding yeast populations.
    Johnson MS; Desai MM
    Elife; 2022 Jul; 11():. PubMed ID: 35880743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.