These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 37461696)
21. Decoding fMRI data with support vector machines and deep neural networks. Liang Y; Bo K; Meyyappan S; Ding M J Neurosci Methods; 2024 Jan; 401():110004. PubMed ID: 37914001 [TBL] [Abstract][Full Text] [Related]
23. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network. Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of magnetic resonance image segmentation in brain low-grade gliomas using support vector machine and convolutional neural network. Yang Q; Zhang H; Xia J; Zhang X Quant Imaging Med Surg; 2021 Jan; 11(1):300-316. PubMed ID: 33392030 [TBL] [Abstract][Full Text] [Related]
25. Structural disconnections associated with language impairments in chronic post-stroke aphasia using disconnectome maps. Billot A; Thiebaut de Schotten M; Parrish TB; Thompson CK; Rapp B; Caplan D; Kiran S Cortex; 2022 Oct; 155():90-106. PubMed ID: 35985126 [TBL] [Abstract][Full Text] [Related]
26. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features. Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705 [TBL] [Abstract][Full Text] [Related]
27. Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease. Bron EE; Klein S; Papma JM; Jiskoot LC; Venkatraghavan V; Linders J; Aalten P; De Deyn PP; Biessels GJ; Claassen JAHR; Middelkoop HAM; Smits M; Niessen WJ; van Swieten JC; van der Flier WM; Ramakers IHGB; van der Lugt A; ; Neuroimage Clin; 2021; 31():102712. PubMed ID: 34118592 [TBL] [Abstract][Full Text] [Related]
28. Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization. Oh K; Kim W; Shen G; Piao Y; Kang NI; Oh IS; Chung YC Schizophr Res; 2019 Oct; 212():186-195. PubMed ID: 31395487 [TBL] [Abstract][Full Text] [Related]
30. Learning hidden patterns from patient multivariate time series data using convolutional neural networks: A case study of healthcare cost prediction. Morid MA; Sheng ORL; Kawamoto K; Abdelrahman S J Biomed Inform; 2020 Nov; 111():103565. PubMed ID: 32980530 [TBL] [Abstract][Full Text] [Related]
31. Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model. Saha S; Pagnozzi A; Bourgeat P; George JM; Bradford D; Colditz PB; Boyd RN; Rose SE; Fripp J; Pannek K Neuroimage; 2020 Jul; 215():116807. PubMed ID: 32278897 [TBL] [Abstract][Full Text] [Related]
32. The utility of lesion classification in predicting language and treatment outcomes in chronic stroke-induced aphasia. Meier EL; Johnson JP; Pan Y; Kiran S Brain Imaging Behav; 2019 Dec; 13(6):1510-1525. PubMed ID: 31093842 [TBL] [Abstract][Full Text] [Related]
33. The role of the hippocampus in statistical learning and language recovery in persons with post stroke aphasia. Schevenels K; Michiels L; Lemmens R; De Smedt B; Zink I; Vandermosten M Neuroimage Clin; 2022; 36():103243. PubMed ID: 36306718 [TBL] [Abstract][Full Text] [Related]
34. Brain health imaging markers, post-stroke aphasia and Cognition: A scoping review. Hannan J; Wilmskoetter J; Fridriksson J; Hillis AE; Bonilha L; Busby N Neuroimage Clin; 2023; 39():103480. PubMed ID: 37536153 [TBL] [Abstract][Full Text] [Related]
35. Interpreting deep learning models for glioma survival classification using visualization and textual explanations. Osadebey M; Liu Q; Fuster-Garcia E; Emblem KE BMC Med Inform Decis Mak; 2023 Oct; 23(1):225. PubMed ID: 37853371 [TBL] [Abstract][Full Text] [Related]
36. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology. Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T; Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002 [TBL] [Abstract][Full Text] [Related]
37. Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization. Farahat A; Reichert C; Sweeney-Reed CM; Hinrichs H J Neural Eng; 2019 Oct; 16(6):066010. PubMed ID: 31416059 [TBL] [Abstract][Full Text] [Related]
38. 3D-Deep Learning Based Automatic Diagnosis of Alzheimer's Disease with Joint MMSE Prediction Using Resting-State fMRI. Duc NT; Ryu S; Qureshi MNI; Choi M; Lee KH; Lee B Neuroinformatics; 2020 Jan; 18(1):71-86. PubMed ID: 31093956 [TBL] [Abstract][Full Text] [Related]
39. Relative contributions of lesion location and lesion size to predictions of varied language deficits in post-stroke aphasia. Thye M; Mirman D Neuroimage Clin; 2018; 20():1129-1138. PubMed ID: 30380520 [TBL] [Abstract][Full Text] [Related]
40. Individualized spatial network predictions using Siamese convolutional neural networks: A resting-state fMRI study of over 11,000 unaffected individuals. Hassanzadeh R; Silva RF; Abrol A; Salman M; Bonkhoff A; Du Y; Fu Z; DeRamus T; Damaraju E; Baker B; Calhoun VD PLoS One; 2022; 17(1):e0249502. PubMed ID: 35061657 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]