These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37462081)

  • 21. Synthesis and properties of a novel bridged nucleic acid analogue, 5'-amino-3',5'-BNA.
    Sekiguchi M; Obika S; Somjing R; Imanishi T
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(5-7):1097-100. PubMed ID: 16248099
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Re-Engineering RNA Molecules into Therapeutic Agents.
    Egli M; Manoharan M
    Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, duplex-forming ability, enzymatic stability, and in vitro antisense potency of oligonucleotides including 2'-C,4'-C-ethyleneoxy-bridged thymidine derivatives.
    Osawa T; Sawamura M; Wada F; Yamamoto T; Obika S; Hari Y
    Org Biomol Chem; 2017 May; 15(18):3955-3963. PubMed ID: 28440828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and biophysical properties of constrained D-altritol nucleic acids (cANA).
    Migawa MT; Prakash TP; Vasquez G; Seth PP; Swayze EE
    Org Lett; 2013 Sep; 15(17):4316-9. PubMed ID: 23937264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR studies of fully modified locked nucleic acid (LNA) hybrids: solution structure of an LNA:RNA hybrid and characterization of an LNA:DNA hybrid.
    Nielsen KE; Rasmussen J; Kumar R; Wengel J; Jacobsen JP; Petersen M
    Bioconjug Chem; 2004; 15(3):449-57. PubMed ID: 15149171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of an N-substituent in sulfonamide-bridged nucleic acid (SuNA) on hybridization ability and duplex structure.
    Mitsuoka Y; Aoyama H; Kugimiya A; Fujimura Y; Yamamoto T; Waki R; Wada F; Tahara S; Sawamura M; Noda M; Hari Y; Obika S
    Org Biomol Chem; 2016 Jul; 14(27):6531-8. PubMed ID: 27296230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ability of locked nucleic acid oligonucleotides to pre-structure the double helix: A molecular simulation and binding study.
    Xu Y; Gissberg O; Pabon-Martinez YV; Wengel J; Lundin KE; Smith CIE; Zain R; Nilsson L; Villa A
    PLoS One; 2019; 14(2):e0211651. PubMed ID: 30753192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and hybridization property of a boat-shaped pyranosyl nucleic acid containing an exocyclic methylene group in the sugar moiety.
    Mori K; Kodama T; Obika S
    Bioorg Med Chem; 2015 Jan; 23(1):33-7. PubMed ID: 25496806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-Synthetic Nucleobase Modification of Oligodeoxynucleotides by Sonogashira Coupling and Influence of Alkynyl Modifications on the Duplex-Forming Ability.
    Mikami A; Mori S; Osawa T; Obika S
    Chemistry; 2023 Nov; 29(63):e202301928. PubMed ID: 37635089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of purine derivatives of Me-TaNA and properties of Me-TaNA-modified oligonucleotides.
    Fuchi Y; Watanabe K; Shoji M; Ito Y; Hari Y
    Org Biomol Chem; 2023 Jun; 21(25):5203-5213. PubMed ID: 37309204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Helix-stabilizing compounds CC-1065 and U-71,184 bind to RNA-DNA and DNA-DNA duplexes containing modified internucleotide linkages and stabilize duplexes against thermal melting.
    Kim DY; Shih DS; Cho DY; Swenson DH
    Antisense Res Dev; 1995; 5(1):49-57. PubMed ID: 7542048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recognition of RNA duplexes by chemically modified triplex-forming oligonucleotides.
    Zhou Y; Kierzek E; Loo ZP; Antonio M; Yau YH; Chuah YW; Geifman-Shochat S; Kierzek R; Chen G
    Nucleic Acids Res; 2013 Jul; 41(13):6664-73. PubMed ID: 23658228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes.
    Freier SM; Altmann KH
    Nucleic Acids Res; 1997 Nov; 25(22):4429-43. PubMed ID: 9358149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and hybridizing properties of isoDNAs including 3'-O,4'-C-ethyleneoxy-bridged 5-methyluridine derivatives.
    Osawa T; Hitomi Y; Wakita S; Kim H; Ito Y; Hari Y
    Bioorg Med Chem; 2018 Aug; 26(14):3875-3881. PubMed ID: 29861173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2'-O,4'-C-Methylene-Bridged Nucleic Acids Stabilize Metal-Mediated Base Pairing in a DNA Duplex.
    Nakagawa O; Fujii A; Kishimoto Y; Nakatsuji Y; Nozaki N; Obika S
    Chembiochem; 2018 Nov; 19(22):2372-2379. PubMed ID: 30168891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformationally restricted carbohydrate-modified nucleic acids and antisense technology.
    Herdewijn P
    Biochim Biophys Acta; 1999 Dec; 1489(1):167-79. PubMed ID: 10807006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and biophysical characterization of R-6'-Me-α-L-LNA modified oligonucleotides.
    Seth PP; Yu J; Allerson CR; Berdeja A; Swayze EE
    Bioorg Med Chem Lett; 2011 Feb; 21(4):1122-5. PubMed ID: 21256012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. True antisense oligonucleotides with modified nucleotides restricted in the N-conformation.
    Koizumi M
    Curr Top Med Chem; 2007; 7(7):661-5. PubMed ID: 17430207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amido-bridged nucleic acids (AmNAs): synthesis, duplex stability, nuclease resistance, and in vitro antisense potency.
    Yahara A; Shrestha AR; Yamamoto T; Hari Y; Osawa T; Yamaguchi M; Nishida M; Kodama T; Obika S
    Chembiochem; 2012 Nov; 13(17):2513-6. PubMed ID: 23081931
    [No Abstract]   [Full Text] [Related]  

  • 40. Locked nucleic acid oligonucleotides: the next generation of antisense agents?
    Grünweller A; Hartmann RK
    BioDrugs; 2007; 21(4):235-43. PubMed ID: 17628121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.