BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37462239)

  • 1. Pyrolysis of Mixed Date Stones and Pistachio Shells: Identification of Bio-Oil and Utilization of Bio-Char as Activated Carbon Precursor.
    Ibrahim ALSY; Mahmood SF; Younis ALSA; Fadhil AB
    Chem Biodivers; 2023 Aug; 20(8):e202300103. PubMed ID: 37462239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char.
    Moralı U; Yavuzel N; Şensöz S
    Bioresour Technol; 2016 Dec; 221():682-685. PubMed ID: 27671342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products.
    Varma AK; Thakur LS; Shankar R; Mondal P
    Waste Manag; 2019 Apr; 89():224-235. PubMed ID: 31079735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends.
    Rajamohan S; Kasimani R
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9523-9538. PubMed ID: 29354857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obtaining bio-oil and activated carbon from waste pomegranate peels by pyrolysis.
    Alagöz O; Yılmaz N; Dilek M
    Environ Sci Pollut Res Int; 2023 Nov; 30(54):115037-115049. PubMed ID: 37880403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.
    Ben Hassen-Trabelsi A; Kraiem T; Naoui S; Belayouni H
    Waste Manag; 2014 Jan; 34(1):210-8. PubMed ID: 24129214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis of sal seed to liquid product.
    Singh VK; Soni AB; Kumar S; Singh RK
    Bioresour Technol; 2014 Jan; 151():432-5. PubMed ID: 24268507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.
    Aboulkas A; Hammani H; El Achaby M; Bilal E; Barakat A; El Harfi K
    Bioresour Technol; 2017 Nov; 243():400-408. PubMed ID: 28688323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolytic conversion of human hair to fuel: performance evaluation and kinetic modelling.
    Krishnakumar P; Sundaramurthy S; Baredar P; Suresh A; Khan MA; Sharma G; Zahmatkesh S; Amesho KTT; Sillanpää M
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):125104-125116. PubMed ID: 37099105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.
    Choi GG; Oh SJ; Lee SJ; Kim JS
    Bioresour Technol; 2015 Feb; 178():99-107. PubMed ID: 25227587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells.
    Lua AC; Yang T
    J Colloid Interface Sci; 2004 Aug; 276(2):364-72. PubMed ID: 15271564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of Waste Cooking Oil into Bio-Fuel via Pyrolysis Using Activated Carbon as a Catalyst.
    Banchapattanasakda W; Asavatesanupap C; Santikunaporn M
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products.
    Patra BR; Nanda S; Dalai AK; Meda V
    Chemosphere; 2021 Dec; 285():131431. PubMed ID: 34329143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilot scale oxidative fast pyrolysis of sawdust in a fluidized bed reactor: A biorefinery approach.
    Karmee SK; Kumari G; Soni B
    Bioresour Technol; 2020 Dec; 318():124071. PubMed ID: 32920336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical analysis and intermediate pyrolysis of Bambara Groundnut Shell (BGS), Sweet Sorghum Stalk (SSS), and Shea Nutshell (SNS).
    Ibrahim MD; Abakr YA; Gan S; Thangalazhy-Gopakumar S
    Environ Technol; 2024 Apr; 45(9):1870-1883. PubMed ID: 36476169
    [No Abstract]   [Full Text] [Related]  

  • 16. A study on pyrolysis of Canada thistle (Cirsium arvense) with titania based catalysts for bio-fuel production.
    Aysu T
    Bioresour Technol; 2016 Nov; 219():175-184. PubMed ID: 27490443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.
    Norouzi O; Jafarian S; Safari F; Tavasoli A; Nejati B
    Bioresour Technol; 2016 Nov; 219():643-651. PubMed ID: 27544914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of pyrolysis bio-oil derived from intermediate pyrolysis of Aegle marmelos de-oiled cake: study on performance and emission characteristics of C.I. engine fueled with Aegle marmelos pyrolysis oil-blends.
    Paramasivam B; Kasimani R; Rajamohan S
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33806-33819. PubMed ID: 30280334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis of sewage sludge for sustainable biofuels and value-added biochar production.
    Ghodke PK; Sharma AK; Pandey JK; Chen WH; Patel A; Ashokkumar V
    J Environ Manage; 2021 Nov; 298():113450. PubMed ID: 34388542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analytical characterization study on biofuel obtained from pyrolysis of Madhuca longifolia residues.
    Thiru S; Kola R; Thimmaraju MK; Dhanalakshmi CS; Sharma V; Sakthi P; Maguluri LP; Ranganathan L; Lalvani JIJ
    Sci Rep; 2024 Jun; 14(1):14745. PubMed ID: 38926435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.