These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37462244)

  • 21. Biofunctional coacervate-based artificial protocells with membrane-like and cytoplasm-like structures for the treatment of persistent hyperuricemia.
    Hu Q; Lan H; Tian Y; Li X; Wang M; Zhang J; Yu Y; Chen W; Kong L; Guo Y; Zhang Z
    J Control Release; 2024 Jan; 365():176-192. PubMed ID: 37992873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Programmable Zwitterionic Droplets as Biomolecular Sorters and Model of Membraneless Organelles.
    Capasso Palmiero U; Paganini C; Kopp MRG; Linsenmeier M; Küffner AM; Arosio P
    Adv Mater; 2022 Jan; 34(4):e2104837. PubMed ID: 34664748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatiotemporal Dynamic Assembly/Disassembly of Organelle-Mimics Based on Intrinsically Disordered Protein-Polymer Conjugates.
    Zhao H; Ibarboure E; Ibrahimova V; Xiao Y; Garanger E; Lecommandoux S
    Adv Sci (Weinh); 2021 Dec; 8(24):e2102508. PubMed ID: 34719874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-Free Expressed Membraneless Organelles Inhibit Translation in Synthetic Cells.
    Robinson AO; Lee J; Cameron A; Keating CD; Adamala KP
    ACS Biomater Sci Eng; 2024 Feb; 10(2):773-781. PubMed ID: 38226971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous Transformation from Membrane-Less Coacervates to Membranized Coacervates and Giant Vesicles: Toward Multicompartmental Protocells with Complex (Membrane) Architectures.
    Zhou Y; Zhang K; Moreno S; Temme A; Voit B; Appelhans D
    Angew Chem Int Ed Engl; 2024 Aug; 63(34):e202407472. PubMed ID: 38847278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatty Acid-Based Coacervates as a Membrane-free Protocell Model.
    Zhou L; Koh JJ; Wu J; Fan X; Chen H; Hou X; Jiang L; Lu X; Li Z; He C
    Bioconjug Chem; 2022 Mar; 33(3):444-451. PubMed ID: 35138820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pH-Controlled Coacervate-Membrane Interactions within Liposomes.
    Last MGF; Deshpande S; Dekker C
    ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active coacervate droplets are protocells that grow and resist Ostwald ripening.
    Nakashima KK; van Haren MHI; André AAM; Robu I; Spruijt E
    Nat Commun; 2021 Jun; 12(1):3819. PubMed ID: 34155210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plant Cell-Inspired Membranization of Coacervate Protocells with a Structured Polysaccharide Layer.
    Ji Y; Lin Y; Qiao Y
    J Am Chem Soc; 2023 Jun; 145(23):12576-12585. PubMed ID: 37267599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications.
    Wang Z; Zhang M; Zhou Y; Zhang Y; Wang K; Liu J
    Small Methods; 2023 Dec; 7(12):e2300042. PubMed ID: 36908048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticle-Assembled Vacuolated Coacervates Control Macromolecule Spatiotemporal Distribution to Provide a Stable Segregated Cell Microenvironment.
    Zhao P; Yang B; Xu X; Lai NC; Li R; Yang X; Bian L
    Adv Mater; 2021 Mar; 33(9):e2007209. PubMed ID: 33506543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets.
    Martin N; Tian L; Spencer D; Coutable-Pennarun A; Anderson JLR; Mann S
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14594-14598. PubMed ID: 31408263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatiotemporal control of coacervate formation within liposomes.
    Deshpande S; Brandenburg F; Lau A; Last MGF; Spoelstra WK; Reese L; Wunnava S; Dogterom M; Dekker C
    Nat Commun; 2019 Apr; 10(1):1800. PubMed ID: 30996302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membranized Coacervate Microdroplets: from Versatile Protocell Models to Cytomimetic Materials.
    Gao N; Mann S
    Acc Chem Res; 2023 Feb; 56(3):297-307. PubMed ID: 36625520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of Membraneless and Multicompartmentalized Coacervate Protocells Controlling a Cell Metabolism-like Cascade Reaction.
    Perin GB; Moreno S; Zhou Y; Günther M; Boye S; Voit B; Felisberti MI; Appelhans D
    Biomacromolecules; 2023 Dec; 24(12):5807-5822. PubMed ID: 37984848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Role of Chemically Innocent Polyanions in Active, Chemically Fueled Complex Coacervate Droplets.
    Späth F; Maier AS; Stasi M; Bergmann AM; Halama K; Wenisch M; Rieger B; Boekhoven J
    Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202309318. PubMed ID: 37549224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spontaneous structuration in coacervate-based protocells by polyoxometalate-mediated membrane assembly.
    Williams DS; Patil AJ; Mann S
    Small; 2014 May; 10(9):1830-40. PubMed ID: 24515342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled Supramolecular Polymerization via Bioinspired, Liquid-Liquid Phase Separation of Monomers.
    Patra S; Chandrabhas S; Dhiman S; George SJ
    J Am Chem Soc; 2024 May; 146(18):12577-12586. PubMed ID: 38683934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide-based coacervates in therapeutic applications.
    Ma L; Fang X; Wang C
    Front Bioeng Biotechnol; 2022; 10():1100365. PubMed ID: 36686257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A short peptide synthon for liquid-liquid phase separation.
    Abbas M; Lipiński WP; Nakashima KK; Huck WTS; Spruijt E
    Nat Chem; 2021 Nov; 13(11):1046-1054. PubMed ID: 34645986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.