BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 37462453)

  • 1. SIRT6: A potential therapeutic target for diabetic cardiomyopathy.
    Wu T; Qu Y; Xu S; Wang Y; Liu X; Ma D
    FASEB J; 2023 Aug; 37(8):e23099. PubMed ID: 37462453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nuclear and mitochondrial sirtuins, Sirt6 and Sirt3, regulate each other's activity and protect the heart from developing obesity-mediated diabetic cardiomyopathy.
    Kanwal A; Pillai VB; Samant S; Gupta M; Gupta MP
    FASEB J; 2019 Oct; 33(10):10872-10888. PubMed ID: 31318577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets.
    Sung MM; Hamza SM; Dyck JR
    Antioxid Redox Signal; 2015 Jun; 22(17):1606-30. PubMed ID: 25808033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sirtuins: To Be or Not To Be in Diabetic Cardiomyopathy.
    Palomer X; Aguilar-Recarte D; García R; Nistal JF; Vázquez-Carrera M
    Trends Mol Med; 2021 Jun; 27(6):554-571. PubMed ID: 33839024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of exercise on improving myocardial mitochondrial function in decreasing diabetic cardiomyopathy.
    Zhang F; Lin JJ; Tian HN; Wang J
    Exp Physiol; 2024 Feb; 109(2):190-201. PubMed ID: 37845840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial dysfunction in diabetic cardiomyopathy.
    Duncan JG
    Biochim Biophys Acta; 2011 Jul; 1813(7):1351-9. PubMed ID: 21256163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel insights into the role of mitochondria in diabetic cardiomyopathy: molecular mechanisms and potential treatments.
    Zhi F; Zhang Q; Liu L; Chang X; Xu H
    Cell Stress Chaperones; 2023 Nov; 28(6):641-655. PubMed ID: 37405612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SIRT6‑specific inhibitor OSS‑128167 exacerbates diabetic cardiomyopathy by aggravating inflammation and oxidative stress.
    Huang Y; Zhang J; Xu D; Peng Y; Jin Y; Zhang L
    Mol Med Rep; 2021 May; 23(5):. PubMed ID: 33760202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse remodeling in diabetic cardiomyopathy: the role of extracellular matrix.
    Aykac I; Podesser BK; Kiss A
    Minerva Cardiol Angiol; 2022 Jun; 70(3):385-392. PubMed ID: 34713679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GCN2 deficiency ameliorates cardiac dysfunction in diabetic mice by reducing lipotoxicity and oxidative stress.
    Feng W; Lei T; Wang Y; Feng R; Yuan J; Shen X; Wu Y; Gao J; Ding W; Lu Z
    Free Radic Biol Med; 2019 Jan; 130():128-139. PubMed ID: 30389499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs.
    Zhou Y; Suo W; Zhang X; Liang J; Zhao W; Wang Y; Li H; Ni Q
    Biomed Pharmacother; 2023 Dec; 168():115669. PubMed ID: 37820568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart Failure in Patients with Diabetes Mellitus.
    Nakamura K; Miyoshi T; Yoshida M; Akagi S; Saito Y; Ejiri K; Matsuo N; Ichikawa K; Iwasaki K; Naito T; Namba Y; Yoshida M; Sugiyama H; Ito H
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α.
    Liu F; Song R; Feng Y; Guo J; Chen Y; Zhang Y; Chen T; Wang Y; Huang Y; Li CY; Cao C; Zhang Y; Hu X; Xiao RP
    Circulation; 2015 Mar; 131(9):795-804. PubMed ID: 25637627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic Cardiomyopathy: Possible Underlying Mechanisms.
    Mahmoud AM
    Adv Exp Med Biol; 2017; 999():207-230. PubMed ID: 29022265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual roles of myocardial mitochondrial AKT on diabetic cardiomyopathy and whole body metabolism.
    Chen YH; Ta AP; Chen Y; Lee HC; Fan W; Chen PL; Jordan MC; Roos KP; MacGregor GR; Yang Q; Edwards RA; Li J; Wang PH
    Cardiovasc Diabetol; 2023 Oct; 22(1):294. PubMed ID: 37891673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empagliflozin improves mitochondrial dysfunction in diabetic cardiomyopathy by modulating ketone body metabolism and oxidative stress.
    Cai W; Chong K; Huang Y; Huang C; Yin L
    Redox Biol; 2024 Feb; 69():103010. PubMed ID: 38160540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rutin alleviates diabetic cardiomyopathy and improves cardiac function in diabetic ApoEknockout mice.
    Huang R; Shi Z; Chen L; Zhang Y; Li J; An Y
    Eur J Pharmacol; 2017 Nov; 814():151-160. PubMed ID: 28826911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac metabolic modulation upon low-carbohydrate low-protein ketogenic diet in diabetic rats studied in vivo using hyperpolarized
    Abdurrachim D; Teo XQ; Woo CC; Ong SY; Salleh NF; Lalic J; Tan RS; Lee PTH
    Diabetes Obes Metab; 2019 Apr; 21(4):949-960. PubMed ID: 30536560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Mitochondrial Abnormalities in Diabetic Cardiomyopathy.
    Dabravolski SA; Sadykhov NK; Kartuesov AG; Borisov EE; Sukhorukov VN; Orekhov AN
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FOXO1 contributes to diabetic cardiomyopathy via inducing imbalanced oxidative metabolism in type 1 diabetes.
    Yan D; Cai Y; Luo J; Liu J; Li X; Ying F; Xie X; Xu A; Ma X; Xia Z
    J Cell Mol Med; 2020 Jul; 24(14):7850-7861. PubMed ID: 32450616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.