BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 37462453)

  • 21. The Role of Mitochondrial Abnormalities in Diabetic Cardiomyopathy.
    Dabravolski SA; Sadykhov NK; Kartuesov AG; Borisov EE; Sukhorukov VN; Orekhov AN
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FOXO1 contributes to diabetic cardiomyopathy via inducing imbalanced oxidative metabolism in type 1 diabetes.
    Yan D; Cai Y; Luo J; Liu J; Li X; Ying F; Xie X; Xu A; Ma X; Xia Z
    J Cell Mol Med; 2020 Jul; 24(14):7850-7861. PubMed ID: 32450616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipid metabolism and its implications for type 1 diabetes-associated cardiomyopathy.
    Ritchie RH; Zerenturk EJ; Prakoso D; Calkin AC
    J Mol Endocrinol; 2017 May; 58(4):R225-R240. PubMed ID: 28373293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plin5, a New Target in Diabetic Cardiomyopathy.
    Cui X; Wang J; Zhang Y; Wei J; Wang Y
    Oxid Med Cell Longev; 2022; 2022():2122856. PubMed ID: 35509833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review of fibroblast growth factor 21 in diabetic cardiomyopathy.
    Zhang X; Yang L; Xu X; Tang F; Yi P; Qiu B; Hao Y
    Heart Fail Rev; 2019 Nov; 24(6):1005-1017. PubMed ID: 31175491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diabetic cardiomyopathy: bench to bedside.
    Schilling JD; Mann DL
    Heart Fail Clin; 2012 Oct; 8(4):619-31. PubMed ID: 22999244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Akap1 deficiency exacerbates diabetic cardiomyopathy in mice by NDUFS1-mediated mitochondrial dysfunction and apoptosis.
    Qi B; He L; Zhao Y; Zhang L; He Y; Li J; Li C; Zhang B; Huang Q; Xing J; Li F; Li Y; Ji L
    Diabetologia; 2020 May; 63(5):1072-1087. PubMed ID: 32072193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial Mechanisms in Diabetic Cardiomyopathy.
    Gollmer J; Zirlik A; Bugger H
    Diabetes Metab J; 2020 Feb; 44(1):33-53. PubMed ID: 32097997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shengmai San Alleviates Diabetic Cardiomyopathy Through Improvement of Mitochondrial Lipid Metabolic Disorder.
    Tian J; Tang W; Xu M; Zhang C; Zhao P; Cao T; Shan X; Lu R; Guo W
    Cell Physiol Biochem; 2018; 50(5):1726-1739. PubMed ID: 30384366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced reticulum-mitochondria Ca
    Dia M; Gomez L; Thibault H; Tessier N; Leon C; Chouabe C; Ducreux S; Gallo-Bona N; Tubbs E; Bendridi N; Chanon S; Leray A; Belmudes L; Couté Y; Kurdi M; Ovize M; Rieusset J; Paillard M
    Basic Res Cardiol; 2020 Nov; 115(6):74. PubMed ID: 33258101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mst1 knockdown alleviates cardiac lipotoxicity and inhibits the development of diabetic cardiomyopathy in db/db mice.
    Xiong Z; Li Y; Zhao Z; Zhang Y; Man W; Lin J; Dong Y; Liu L; Wang B; Wang H; Guo B; Li C; Li F; Wang H; Sun D
    Biochim Biophys Acta Mol Basis Dis; 2020 Aug; 1866(8):165806. PubMed ID: 32320827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peroxisome proliferator-activated receptors modulate cardiac dysfunction in diabetic cardiomyopathy.
    Lee TI; Kao YH; Chen YC; Huang JH; Hsiao FC; Chen YJ
    Diabetes Res Clin Pract; 2013 Jun; 100(3):330-9. PubMed ID: 23369225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tom70 protects against diabetic cardiomyopathy through its antioxidant and antiapoptotic properties.
    Wang P; Wang D; Yang Y; Hou J; Wan J; Ran F; Dai X; Zhou P; Yang Y
    Hypertens Res; 2020 Oct; 43(10):1047-1056. PubMed ID: 32724135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial energy metabolism in diabetic cardiomyopathy: Physiological adaption, pathogenesis, and therapeutic targets.
    Ye W; Han K; Xie M; Li S; Chen G; Wang Y; Li T
    Chin Med J (Engl); 2024 Apr; 137(8):936-948. PubMed ID: 38527931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Streptozotocin-induced type II diabetic rat administered with nonobesogenic high-fat diet is highly susceptible to myocardial ischemia-reperfusion injury: An insight into the function of mitochondria.
    Ansari M; Gopalakrishnan S; Kurian GA
    J Cell Physiol; 2019 Apr; 234(4):4104-4114. PubMed ID: 30191974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy.
    Wang SY; Zhu S; Wu J; Zhang M; Xu Y; Xu W; Cui J; Yu B; Cao W; Liu J
    J Mol Med (Berl); 2020 Feb; 98(2):245-261. PubMed ID: 31897508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cardiomyopathy in obesity, insulin resistance and diabetes.
    Nakamura M; Sadoshima J
    J Physiol; 2020 Jul; 598(14):2977-2993. PubMed ID: 30869158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PPARs modulate cardiac metabolism and mitochondrial function in diabetes.
    Lee TW; Bai KJ; Lee TI; Chao TF; Kao YH; Chen YJ
    J Biomed Sci; 2017 Jan; 24(1):5. PubMed ID: 28069019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myocardial glycophagy flux dysregulation and glycogen accumulation characterize diabetic cardiomyopathy.
    Mellor KM; Varma U; Koutsifeli P; Daniels LJ; Benson VL; Annandale M; Li X; Nursalim Y; Janssens JV; Weeks KL; Powell KL; O'Brien TJ; Katare R; Ritchie RH; Bell JR; Gottlieb RA; Delbridge LMD
    J Mol Cell Cardiol; 2024 Apr; 189():83-89. PubMed ID: 38484473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogen sulfide plays a potential alternative for the treatment of metabolic disorders of diabetic cardiomyopathy.
    Deng NH; Luo W; Gui DD; Yan BJ; Zhou K; Tian KJ; Ren Z; Xiong WH; Jiang ZS
    Mol Cell Biochem; 2022 Jan; 477(1):255-265. PubMed ID: 34687394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.