These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 37462982)
21. Microbial insecticides in Iran: History, current status, challenges and perspective. Karimi J; Dara SK; Arthurs S J Invertebr Pathol; 2019 Jul; 165():67-73. PubMed ID: 29476767 [TBL] [Abstract][Full Text] [Related]
22. Proteomics as a tool for tapping potential of entomopathogens as microbial insecticides. Harith Fadzilah N; Abdul-Ghani I; Hassan M Arch Insect Biochem Physiol; 2019 Jan; 100(1):e21520. PubMed ID: 30426561 [TBL] [Abstract][Full Text] [Related]
23. Natural products for pest control: an analysis of their role, value and future. Gerwick BC; Sparks TC Pest Manag Sci; 2014 Aug; 70(8):1169-85. PubMed ID: 24478254 [TBL] [Abstract][Full Text] [Related]
24. Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry. Furlan L; Kreutzweiser D Environ Sci Pollut Res Int; 2015 Jan; 22(1):135-47. PubMed ID: 25273517 [TBL] [Abstract][Full Text] [Related]
25. United States Department of Agriculture-Agricultural Research Service research on managing insect resistance to insecticides. Elzen GW; Hardee DD Pest Manag Sci; 2003; 59(6-7):770-6. PubMed ID: 12846328 [TBL] [Abstract][Full Text] [Related]
26. Use of plant extracts for tea pest management in India. Roy S; Handique G; Muraleedharan N; Dashora K; Roy SM; Mukhopadhyay A; Babu A Appl Microbiol Biotechnol; 2016 Jun; 100(11):4831-44. PubMed ID: 27102124 [TBL] [Abstract][Full Text] [Related]
28. Microbial and viral chitinases: Attractive biopesticides for integrated pest management. Berini F; Katz C; Gruzdev N; Casartelli M; Tettamanti G; Marinelli F Biotechnol Adv; 2018; 36(3):818-838. PubMed ID: 29305895 [TBL] [Abstract][Full Text] [Related]
29. Microbial management of arthropod pests of tea: current state and prospects. Roy S; Muraleedharan N Appl Microbiol Biotechnol; 2014 Jun; 98(12):5375-86. PubMed ID: 24760230 [TBL] [Abstract][Full Text] [Related]
30. Ecologically controlling insect and mite pests of tea plants with microbial pesticides: a review. Idris AL; Fan X; Muhammad MH; Guo Y; Guan X; Huang T Arch Microbiol; 2020 Aug; 202(6):1275-1284. PubMed ID: 32185410 [TBL] [Abstract][Full Text] [Related]
31. Prospects of chitinase in sustainable farming and modern biotechnology: an update on recent progress and challenges. Sharma A; Arya SK; Singh J; Kapoor B; Bhatti JS; Suttee A; Singh G Biotechnol Genet Eng Rev; 2024 Apr; 40(1):310-340. PubMed ID: 36856523 [TBL] [Abstract][Full Text] [Related]
32. Current status and prospects on microbial control in Japan. Kunimi Y J Invertebr Pathol; 2007 Jul; 95(3):181-6. PubMed ID: 17462666 [TBL] [Abstract][Full Text] [Related]
33. Advances in automatic identification of flying insects using optical sensors and machine learning. Kirkeby C; Rydhmer K; Cook SM; Strand A; Torrance MT; Swain JL; Prangsma J; Johnen A; Jensen M; Brydegaard M; Græsbøll K Sci Rep; 2021 Jan; 11(1):1555. PubMed ID: 33452353 [TBL] [Abstract][Full Text] [Related]
38. A modelling methodology to assess the effect of insect pest control on agro-ecosystems. Wan NF; Ji XY; Jiang JX; Li B Sci Rep; 2015 Apr; 5():9727. PubMed ID: 25906199 [TBL] [Abstract][Full Text] [Related]
39. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Pérez-García A; Romero D; de Vicente A Curr Opin Biotechnol; 2011 Apr; 22(2):187-93. PubMed ID: 21211960 [TBL] [Abstract][Full Text] [Related]
40. Improving pest monitoring networks using a simulation-based approach to contribute to pesticide reduction. Cros MJ; Aubertot JN; Gaba S; Reboud X; Sabbadin R; Peyrard N Theor Popul Biol; 2021 Oct; 141():24-33. PubMed ID: 34153290 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]