These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37463271)

  • 21. High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries.
    Lee MJ; Lee S; Oh P; Kim Y; Cho J
    Nano Lett; 2014 Feb; 14(2):993-9. PubMed ID: 24392731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase transitions in a LiMn2O4 nanowire battery observed by operando electron microscopy.
    Lee S; Oshima Y; Hosono E; Zhou H; Kim K; Chang HM; Kanno R; Takayanagi K
    ACS Nano; 2015 Jan; 9(1):626-32. PubMed ID: 25513896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile One-Step Dynamic Hydrothermal Synthesis of Spinel LiMn
    Shen C; Xu H; Liu L; Hu H; Chen S; Su L; Wang L
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of Electrochemical Performance of LiMn₂O₄ Spinel Cathode Material by Synergetic Substitution with Ni and S.
    Bakierska M; Świętosławski M; Gajewska M; Kowalczyk A; Piwowarska Z; Chmielarz L; Dziembaj R; Molenda M
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient enhancement on crystallization and electrochemical performance of LiMn
    Hao J; Hao S; Xie M
    Heliyon; 2022 Dec; 8(12):e12145. PubMed ID: 36561664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery.
    Liu T; Dai A; Lu J; Yuan Y; Xiao Y; Yu L; Li M; Gim J; Ma L; Liu J; Zhan C; Li L; Zheng J; Ren Y; Wu T; Shahbazian-Yassar R; Wen J; Pan F; Amine K
    Nat Commun; 2019 Oct; 10(1):4721. PubMed ID: 31624258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spinel LiMn2O4 nanorods as lithium ion battery cathodes.
    Kim DK; Muralidharan P; Lee HW; Ruffo R; Yang Y; Chan CK; Peng H; Huggins RA; Cui Y
    Nano Lett; 2008 Nov; 8(11):3948-52. PubMed ID: 18826287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlative Electrochemical Microscopy of Li-Ion (De)intercalation at a Series of Individual LiMn
    Tao B; Yule LC; Daviddi E; Bentley CL; Unwin PR
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4606-4611. PubMed ID: 30724004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ atomic force microscopy analysis of morphology and particle size changes in lithium iron phosphate cathode during discharge.
    Demirocak DE; Bhushan B
    J Colloid Interface Sci; 2014 Jun; 423():151-7. PubMed ID: 24703680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Situ Electrochemical Mapping of Lithium-Sulfur Battery Interfaces Using AFM-SECM.
    Mahankali K; Thangavel NK; Reddy Arava LM
    Nano Lett; 2019 Aug; 19(8):5229-5236. PubMed ID: 31322899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LiMn
    Tang CY; Leung K; Haasch RT; Dillon SJ
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33968-33978. PubMed ID: 28901735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AFM as an analysis tool for high-capacity sulfur cathodes for Li-S batteries.
    Hiesgen R; Sörgel S; Costa R; Carlé L; Galm I; Cañas N; Pascucci B; Friedrich KA
    Beilstein J Nanotechnol; 2013; 4():611-24. PubMed ID: 24205455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries.
    Breitung B; Baumann P; Sommer H; Janek J; Brezesinski T
    Nanoscale; 2016 Aug; 8(29):14048-56. PubMed ID: 27222212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-doping to suppress cracking in spinel LiMn2O4: a joint theoretical and experimental study.
    Zhang Z; Chen Z; Wang G; Ren H; Pan M; Xiao L; Wu K; Zhao L; Yang J; Wu Q; Shu J; Wang D; Zhang H; Huo N; Li J
    Phys Chem Chem Phys; 2016 Mar; 18(9):6893-900. PubMed ID: 26879071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oriented LiMn
    Warburton RE; Castro FC; Deshpande S; Madsen KE; Bassett KL; Dos Reis R; Gewirth AA; Dravid VP; Greeley J
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):49182-49191. PubMed ID: 32972133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding the Effect of Al Doping on the Electrochemical Performance Improvement of the LiMn
    Xu W; Zheng Y; Cheng Y; Qi R; Peng H; Lin H; Huang R
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45446-45454. PubMed ID: 34533922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding Surface Structural Stabilization of the High-Temperature and High-Voltage Cycling Performance of Al
    Chen B; Ben L; Yu H; Chen Y; Huang X
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):550-559. PubMed ID: 29265811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atomic Force Microscopy: An Introduction.
    Piontek MC; Roos WH
    Methods Mol Biol; 2018; 1665():243-258. PubMed ID: 28940073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging Phase Segregation in Nanoscale Li
    Fuller EJ; Ashby DS; Polop C; Salagre E; Bhargava B; Song Y; Vasco E; Sugar JD; Albertus P; Menteş TO; Locatelli A; Segovia P; Gonzalez-Barrio MÁ; Mascaraque A; Michel EG; Talin AA
    ACS Nano; 2022 Oct; 16(10):16363-16371. PubMed ID: 36129847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical phase transformation accompanied with Mg extraction and insertion in a spinel MgMn
    Hatakeyama T; Okamoto NL; Shimokawa K; Li H; Nakao A; Uchimoto Y; Tanimura H; Kawaguchi T; Ichitsubo T
    Phys Chem Chem Phys; 2019 Nov; 21(42):23749-23757. PubMed ID: 31637389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.