BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37463342)

  • 1. Quantum Descriptors for Predicting and Understanding the Structure-Activity Relationships of Michael Acceptor Warheads.
    Liu R; Vázquez-Montelongo EA; Ma S; Shen J
    J Chem Inf Model; 2023 Aug; 63(15):4912-4923. PubMed ID: 37463342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QM/MM simulations of EFGR with afatinib reveal the role of the
    Ma S; Patel H; Peeples CA; Shen J
    bioRxiv; 2024 May; ():. PubMed ID: 38766221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QM/MM Simulations of Afatinib-EGFR Addition: The Role of β-Dimethylaminomethyl Substitution.
    Ma S; Patel H; Peeples CA; Shen J
    J Chem Theory Comput; 2024 Jun; ():. PubMed ID: 38877999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions.
    Jackson PA; Widen JC; Harki DA; Brummond KM
    J Med Chem; 2017 Feb; 60(3):839-885. PubMed ID: 27996267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Michael-acceptor reactivity and toxicity through quantum chemical transition-state calculations.
    Mulliner D; Wondrousch D; Schüürmann G
    Org Biomol Chem; 2011 Dec; 9(24):8400-12. PubMed ID: 22048735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleophilicity of Glutathione: A Link to Michael Acceptor Reactivities.
    Mayer RJ; Ofial AR
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17704-17708. PubMed ID: 31560405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and Thermodynamics of Reversible Thiol Additions to Mono- and Diactivated Michael Acceptors: Implications for the Design of Drugs That Bind Covalently to Cysteines.
    Krenske EH; Petter RC; Houk KN
    J Org Chem; 2016 Dec; 81(23):11726-11733. PubMed ID: 27934455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the Armory: Predicting and Tuning Covalent Warhead Reactivity.
    Lonsdale R; Burgess J; Colclough N; Davies NL; Lenz EM; Orton AL; Ward RA
    J Chem Inf Model; 2017 Dec; 57(12):3124-3137. PubMed ID: 29131621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivities of acrylamide warheads toward cysteine targets: a QM/ML approach to covalent inhibitor design.
    Danilack AD; Dickson CJ; Soylu C; Fortunato M; Rodde S; Munkler H; Hornak V; Duca JS
    J Comput Aided Mol Des; 2024 May; 38(1):21. PubMed ID: 38693331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress in covalent warheads for in vivo targeting of endogenous proteins.
    Shindo N; Ojida A
    Bioorg Med Chem; 2021 Oct; 47():116386. PubMed ID: 34509863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated computational screening of the thiol reactivity of substituted alkenes.
    Smith JM; Rowley CN
    J Comput Aided Mol Des; 2015 Aug; 29(8):725-35. PubMed ID: 26159564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent inhibitor reactivity prediction by the electrophilicity index-in and out of scope.
    Hermann MR; Pautsch A; Grundl MA; Weber A; Tautermann CS
    J Comput Aided Mol Des; 2021 Apr; 35(4):531-539. PubMed ID: 33015740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can molecular and atomic descriptors predict the electrophilicity of Michael acceptors?
    Hoffmann G; Tognetti V; Joubert L
    J Mol Model; 2018 Sep; 24(10):281. PubMed ID: 30218204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative reactivity analysis of small-molecule thiol surrogates.
    Petri L; Ábrányi-Balogh P; Varga PR; Imre T; Keserű GM
    Bioorg Med Chem; 2020 Apr; 28(7):115357. PubMed ID: 32081630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification and Theoretical Analysis of the Electrophilicities of Michael Acceptors.
    Allgäuer DS; Jangra H; Asahara H; Li Z; Chen Q; Zipse H; Ofial AR; Mayr H
    J Am Chem Soc; 2017 Sep; 139(38):13318-13329. PubMed ID: 28921959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining Michael Acceptor Reactivity from Kinetic, Mechanistic, and Computational Analysis for the Base-catalyzed Thiol-Michael Reaction.
    Huang S; Kim K; Musgrave GM; Sharp M; Sinha J; Stansbury JW; Musgrave CB; Bowman CN
    Polym Chem; 2021 Jul; 12(25):3619-3628. PubMed ID: 34484433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decomplexation as a rate limitation in the thiol-Michael addition of N-acrylamides.
    Brown JS; Ruttinger AW; Vaidya AJ; Alabi CA; Clancy P
    Org Biomol Chem; 2020 Aug; 18(32):6364-6377. PubMed ID: 32760955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Fragment-Based in Silico Profiler for Michael Addition Thiol Reactivity.
    Ebbrell DJ; Madden JC; Cronin MT; Schultz TW; Enoch SJ
    Chem Res Toxicol; 2016 Jun; 29(6):1073-81. PubMed ID: 27100370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A road map for prioritizing warheads for cysteine targeting covalent inhibitors.
    Ábrányi-Balogh P; Petri L; Imre T; Szijj P; Scarpino A; Hrast M; Mitrović A; Fonovič UP; Németh K; Barreteau H; Roper DI; Horváti K; Ferenczy GG; Kos J; Ilaš J; Gobec S; Keserű GM
    Eur J Med Chem; 2018 Dec; 160():94-107. PubMed ID: 30321804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophilic warheads in covalent drug discovery: an overview.
    Péczka N; Orgován Z; Ábrányi-Balogh P; Keserű GM
    Expert Opin Drug Discov; 2022 Apr; 17(4):413-422. PubMed ID: 35129005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.