These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3746346)

  • 1. Gliogenesis in organotypic tissue culture of the spinal cord of the embryonic mouse. II. Autoradiographic studies.
    Munoz-Garcia D; Ludwin SK
    J Neurocytol; 1986 Jun; 15(3):291-302. PubMed ID: 3746346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gliogenesis in organotypic tissue culture of the spinal cord of the embryonic mouse. I. Immunocytochemical and ultrastructural studies.
    Munoz-Garcia D; Ludwin SK
    J Neurocytol; 1986 Jun; 15(3):273-90. PubMed ID: 3528398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radioautographic investigation of gliogenesis in the corpus callosum of young rats. I. Sequential changes in oligodendrocytes.
    Imamoto K; Paterson JA; Leblond CP
    J Comp Neurol; 1978 Jul; 180(1):115-28, 132-7. PubMed ID: 649784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental appearance, antigenic profile, and proliferation of glial cells of the human embryonic spinal cord: an immunocytochemical study using dissociated cultured cells.
    Aloisi F; Giampaolo A; Russo G; Peschle C; Levi G
    Glia; 1992; 5(3):171-81. PubMed ID: 1375191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased proliferation of oligodendrocytes in the hypomyelinated mouse mutant-jimpy.
    Skoff RP
    Brain Res; 1982 Sep; 248(1):19-31. PubMed ID: 7127139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermediate glial cells and reactive astrocytes revisited. A study in organotypic tissue culture.
    Munoz-Garcia D; Ludwin SK
    J Neuroimmunol; 1985 Jun; 8(4-6):237-54. PubMed ID: 2409107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A marker for oligodendrocytes and its relation to myelinogenesis: an immunocytochemical study with experimental allergic encephalomyelitis serum and C.N.S. cultures.
    Bonnaud-Toulze EN; Johnson AB; Bornstein MB; Raine CS
    J Neurocytol; 1981 Aug; 10(4):645-57. PubMed ID: 7031193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early postnatal development of glial cells in the canine cervical spinal cord.
    Lord KE; Duncan ID
    J Comp Neurol; 1987 Nov; 265(1):34-46. PubMed ID: 3693603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CNS neuronal cell line-derived factors regulate gliogenesis in neonatal rat brain cultures.
    Bottenstein JE; Hunter SF; Seidel M
    J Neurosci Res; 1988 Jul; 20(3):291-303. PubMed ID: 2852260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gliogenesis in rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors.
    Hirano M; Goldman JE
    J Neurosci Res; 1988; 21(2-4):155-67. PubMed ID: 3216418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo analysis of glial cell phenotypes during a viral demyelinating disease in mice.
    Godfraind C; Friedrich VL; Holmes KV; Dubois-Dalcq M
    J Cell Biol; 1989 Nov; 109(5):2405-16. PubMed ID: 2553746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H3-thymidine labeled cerebrospinal fluid contacting cells in the regenerating caudal spinal cord of the lizard Lampropholis.
    Alibardi L
    Ann Anat; 1994 Aug; 176(4):347-56. PubMed ID: 8085658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An autoradiographic study of the proliferation and differentiation of glial cells in vitro.
    Manuelidis L; Manuelidis EE
    Acta Neuropathol; 1971; 18(3):193-213. PubMed ID: 5105494
    [No Abstract]   [Full Text] [Related]  

  • 14. The astroglial cell that guides nerve fibers from growth cone to synapse in organotypic cultures of the fetal mouse spinal cord.
    Sobkowicz HM; Waclawik AJ; August BK
    Synapse; 2006 Mar; 59(4):183-200. PubMed ID: 16385506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of opioid-dependent glial development in dissociated and organotypic cultures of mouse central nervous system: critical periods and target specificity.
    Hauser KF; Stiene-Martin A
    Brain Res Dev Brain Res; 1991 Oct; 62(2):245-55. PubMed ID: 1769103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of oligodendrocytes grown in neocortex and spinal cord aggregate cultures.
    Devon RM
    Brain Res; 1987 Apr; 429(2):289-94. PubMed ID: 3567667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin.
    Skoff RP; Price DL; Stocks A
    J Comp Neurol; 1976 Oct; 169(3):313-34. PubMed ID: 972202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radioautographic evidence for slow astrocyte turnover and modest oligodendrocyte production in the corpus callosum of adult mice infused with 3H-thymidine.
    McCarthy GF; Leblond CP
    J Comp Neurol; 1988 May; 271(4):589-603. PubMed ID: 3385018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the avian glycogen body. II. Observations in support of a glial nature in the chick embryo.
    De Gennaro LD
    Growth Dev Aging; 1993; 57(4):275-81. PubMed ID: 8300280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Problems encountered when immunocytochemistry is used for quantitative glial cell identification in autoradiographic studies of cell proliferation in the brain of the unlesioned adult mouse.
    Korr H; Horsmann C; Schürmann M; Delaunoy JP; Labourdette G
    Cell Tissue Res; 1994 Oct; 278(1):85-95. PubMed ID: 7525071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.