These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37463751)

  • 1. Unraveling the palindromic and nonpalindromic motifs of retroviral integration site sequences by statistical mixture models.
    Miklík D; Grim J; Elleder D; Hejnar J
    Genome Res; 2023 Aug; 33(8):1395-1408. PubMed ID: 37463751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and specific internal cleavage of a retroviral palindromic DNA sequence by tetrameric HIV-1 integrase.
    Delelis O; Parissi V; Leh H; Mbemba G; Petit C; Sonigo P; Deprez E; Mouscadet JF
    PLoS One; 2007 Jul; 2(7):e608. PubMed ID: 17622353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retroviruses integrate into a shared, non-palindromic DNA motif.
    Kirk PD; Huvet M; Melamed A; Maertens GN; Bangham CR
    Nat Microbiol; 2016 Nov; 2():16212. PubMed ID: 27841853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SATB1-binding sequences and Alu-like motifs define a unique chromatin context in the vicinity of human immunodeficiency virus type 1 integration sites.
    Kumar PP; Mehta S; Purbey PK; Notani D; Jayani RS; Purohit HJ; Raje DV; Ravi DS; Bhonde RR; Mitra D; Galande S
    J Virol; 2007 Jun; 81(11):5617-27. PubMed ID: 17376900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses.
    Wu X; Li Y; Crise B; Burgess SM; Munroe DJ
    J Virol; 2005 Apr; 79(8):5211-4. PubMed ID: 15795304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Both substrate and target oligonucleotide sequences affect in vitro integration mediated by human immunodeficiency virus type 1 integrase protein produced in Saccharomyces cerevisiae.
    Leavitt AD; Rose RB; Varmus HE
    J Virol; 1992 Apr; 66(4):2359-68. PubMed ID: 1548767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrase and integration: biochemical activities of HIV-1 integrase.
    Delelis O; Carayon K; Saïb A; Deprez E; Mouscadet JF
    Retrovirology; 2008 Dec; 5():114. PubMed ID: 19091057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosome structure and human immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target.
    Carteau S; Hoffmann C; Bushman F
    J Virol; 1998 May; 72(5):4005-14. PubMed ID: 9557688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Key determinants of target DNA recognition by retroviral intasomes.
    Serrao E; Ballandras-Colas A; Cherepanov P; Maertens GN; Engelman AN
    Retrovirology; 2015 Apr; 12():39. PubMed ID: 25924943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications.
    Wang GP; Ciuffi A; Leipzig J; Berry CC; Bushman FD
    Genome Res; 2007 Aug; 17(8):1186-94. PubMed ID: 17545577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences.
    Mitchell RS; Beitzel BF; Schroder AR; Shinn P; Chen H; Berry CC; Ecker JR; Bushman FD
    PLoS Biol; 2004 Aug; 2(8):E234. PubMed ID: 15314653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viability of palindromic DNA is restored by deletions occurring at low but variable frequency in plasmids of Escherichia coli.
    Hagan CE; Warren GJ
    Gene; 1983 Oct; 24(2-3):317-26. PubMed ID: 6357953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection.
    Pryciak PM; Varmus HE
    Cell; 1992 May; 69(5):769-80. PubMed ID: 1317268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised statistical discovery of spaced motifs in prokaryotic genomes.
    Tong H; Schliekelman P; Mrázek J
    BMC Genomics; 2017 Jan; 18(1):27. PubMed ID: 28056763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basis of HTLV type 1 target site selection.
    Leclercq I; Mortreux F; Gabet AS; Jonsson CB; Wattel E
    AIDS Res Hum Retroviruses; 2000 Nov; 16(16):1653-9. PubMed ID: 11080806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and analysis of retroviral integration targets by solo long terminal repeat inverse PCR.
    Jin YF; Ishibashi T; Nomoto A; Masuda M
    J Virol; 2002 Jun; 76(11):5540-7. PubMed ID: 11991982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the code for retroviral integration target site selection.
    Santoni FA; Hartley O; Luban J
    PLoS Comput Biol; 2010 Nov; 6(11):e1001008. PubMed ID: 21124862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration site selection by retroviral vectors: molecular mechanism and clinical consequences.
    Daniel R; Smith JA
    Hum Gene Ther; 2008 Jun; 19(6):557-68. PubMed ID: 18533894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Analysis of Transposon and Retroviral Insertions Reveals Preferential Integrations in Regions of DNA Flexibility.
    Vrljicak P; Tao S; Varshney GK; Quach HN; Joshi A; LaFave MC; Burgess SM; Sampath K
    G3 (Bethesda); 2016 Apr; 6(4):805-17. PubMed ID: 26818075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. E1 recognition sequences in the bovine papillomavirus type 1 origin of DNA replication: interaction between half sites of the inverted repeats.
    Mendoza R; Gandhi L; Botchan MR
    J Virol; 1995 Jun; 69(6):3789-98. PubMed ID: 7745726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.