These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37463967)

  • 1. Formation of self-nitrogen-doping activated carbon from Fish/sawdust/ZnCl
    El-Nemr MA; Hassaan MA; Ashour I
    Sci Rep; 2023 Jul; 13(1):11556. PubMed ID: 37463967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of N-doping activated carbons from fish waste and sawdust for Acid Yellow 36 dye removal from an aquatic environment.
    El-Nemr MA; Hassaan MA; Ashour I
    Sci Rep; 2023 Apr; 13(1):5892. PubMed ID: 37041270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon.
    Karthikeyan T; Rajgopal S; Miranda LR
    J Hazard Mater; 2005 Sep; 124(1-3):192-9. PubMed ID: 15927367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption performance of activated carbon synthesis by ZnCl
    Karapınar HS
    Environ Technol; 2022 Apr; 43(9):1417-1435. PubMed ID: 34429039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen and sulfur codoped micro-mesoporous carbon sheets derived from natural biomass for synergistic removal of chromium(VI): adsorption behavior and computing mechanism.
    Chen F; Zhang M; Ma L; Ren J; Ma P; Li B; Wu N; Song Z; Huang L
    Sci Total Environ; 2020 Aug; 730():138930. PubMed ID: 32388372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced Cr(VI) sorption properties of activated carbon produced via pyrolysis of the "Posidonia oceanica" seagrass.
    Asimakopoulos G; Baikousi M; Salmas C; Bourlinos AB; Zboril R; Karakassides MA
    J Hazard Mater; 2021 Mar; 405():124274. PubMed ID: 33131936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tea waste derived activated carbon for the adsorption of sodium diclofenac from wastewater: adsorbent characteristics, adsorption isotherms, kinetics, and thermodynamics.
    Malhotra M; Suresh S; Garg A
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32210-32220. PubMed ID: 30221322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of aqueous Cr(VI) by Zn- and Al-modified hydrochar.
    Li F; Zimmerman AR; Hu X; Gao B
    Chemosphere; 2020 Dec; 260():127610. PubMed ID: 32683020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic mechanism about the selective adsorption of Cr(VI) from salt solution on nitrogen-doped carbon aerogel microsphere pyrolysis products.
    Li J; Cheng R; Chen J; Lan J; Li S; Zhou M; Zeng T; Hou H
    Sci Total Environ; 2021 Dec; 798():149331. PubMed ID: 34333442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent.
    Mohan D; Rajput S; Singh VK; Steele PH; Pittman CU
    J Hazard Mater; 2011 Apr; 188(1-3):319-33. PubMed ID: 21354700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon.
    El-Sikaily A; El Nemr A; Khaled A; Abdelwehab O
    J Hazard Mater; 2007 Sep; 148(1-2):216-28. PubMed ID: 17360109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.
    Boudrahem F; Aissani-Benissad F; Aït-Amar H
    J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of Cr(III) from chrome tanning wastewater by adsorption using two natural carbonaceous materials: Eggshell and powdered marble.
    Elabbas S; Mandi L; Berrekhis F; Pons MN; Leclerc JP; Ouazzani N
    J Environ Manage; 2016 Jan; 166():589-95. PubMed ID: 26598282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of Cr(VI) by NaOH-modified microporous activated carbons derived from the wastes of Amaranthus retroflexus, Magnolia soulangeana, and Tanacetum Vulgar L.: mechanism, isotherms, and kinetic studies.
    Beig SUR; Shah SA
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):35808-35837. PubMed ID: 36538220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium(III) removal from water and wastewater using a carboxylate-functionalized cation exchanger prepared from a lignocellulosic residue.
    Anirudhan TS; Radhakrishnan PG
    J Colloid Interface Sci; 2007 Dec; 316(2):268-76. PubMed ID: 17905262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical analyses on effective removal of cadmium and hexavalent chromium ions by multiwall carbon nanotubes (MWCNTs).
    Obayomi KS; Bello JO; Yahya MD; Chukwunedum E; Adeoye JB
    Heliyon; 2020 Jun; 6(6):e04174. PubMed ID: 32551395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of hexavalent chromium from aqueous solution on raw and modified activated carbon.
    Tang C; Zhang R; Wen S; Li K; Zheng X; Zhu M
    Water Environ Res; 2009 Jul; 81(7):728-34. PubMed ID: 19691254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of magnetic field on the removal of copper from aqueous solution using activated carbon derived from rice husk.
    Kamilya T; Mondal S; Saha R
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20017-20034. PubMed ID: 33394433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesized bioadsorbent from fish scale for chromium (III) removal.
    Teshale F; Karthikeyan R; Sahu O
    Micron; 2020 Mar; 130():102817. PubMed ID: 31924593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Removal of Hexavalent Chromium (Cr(VI)) from Wastewater Using Amide-Modified Biochar.
    Ali A; Alharthi S; Al-Shaalan NH; Naz A; Fan HS
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.