BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 37464018)

  • 1. Tailoring passivators for highly efficient and stable perovskite solar cells.
    Zhang H; Pfeifer L; Zakeeruddin SM; Chu J; Grätzel M
    Nat Rev Chem; 2023 Sep; 7(9):632-652. PubMed ID: 37464018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells.
    Du B; He K; Zhao X; Li B
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional Defect Management in Perovskites by In Situ Decomposition of Organic Metal Chalcogenides for Efficient Solar Cells.
    Wang GE; Xiao GB; Li CP; Fu ZH; Cao J; Xu G
    Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202313833. PubMed ID: 37942505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance.
    Wu T; Li X; Qi Y; Zhang Y; Han L
    ChemSusChem; 2021 Oct; 14(20):4354-4376. PubMed ID: 34424613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defect Passivation Using Trichloromelamine for Highly Efficient and Stable Perovskite Solar Cells.
    Niu Q; Zhang L; Xu Y; Yuan C; Qi W; Fu S; Ma Y; Zeng W; Xia R; Min Y
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of Lithium Fluoride Restraining Thermal Degradation and Photodegradation of Organometal Halide Perovskite Solar Cells.
    Yun AJ; Kim J; Gil B; Woo H; Park K; Cho J; Park B
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50418-50425. PubMed ID: 33119266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient and Stable Perovskite Solar Cells via CsPF
    Cai Q; Lin Z; Zhang W; Xu X; Dong H; Yuan S; Liang C; Mu C
    J Phys Chem Lett; 2022 May; 13(20):4598-4604. PubMed ID: 35584450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules.
    Xin D; Tie S; Yuan R; Zheng X; Zhu J; Zhang WH
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44233-44240. PubMed ID: 31696708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic Ammonium Halide Modulators as Effective Strategy for Enhanced Perovskite Photovoltaic Performance.
    Akin S; Dong B; Pfeifer L; Liu Y; Graetzel M; Hagfeldt A
    Adv Sci (Weinh); 2021 May; 8(10):2004593. PubMed ID: 34026455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defects in CsPbX
    Zhang J; Zhao W; Olthof S; Liu SF
    Small Methods; 2021 Nov; 5(11):e2100725. PubMed ID: 34927958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-Level Transient Spectroscopy for Effective Passivator Selection in Perovskite Solar Cells to Attain High Efficiency over 23.
    Ren X; Zhang B; Zhang L; Wen J; Che B; Bai D; You J; Chen T; Liu SF
    ChemSusChem; 2021 Aug; 14(15):3182-3189. PubMed ID: 34124848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic material passivation of defects toward efficient perovskite solar cells.
    Qi W; Zhou X; Li J; Cheng J; Li Y; Ko MJ; Zhao Y; Zhang X
    Sci Bull (Beijing); 2020 Dec; 65(23):2022-2032. PubMed ID: 36659061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing Surface Passivators Through Intramolecular Potential Manipulation for Efficient and Stable Perovskite Solar Cells.
    Guo T; Liang Z; Liu B; Huang Z; Xu H; Tao Y; Zhang H; Zheng H; Ye J; Pan X
    Small; 2024 Apr; ():e2402197. PubMed ID: 38682612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Ultraviolet Stability and Performance of Wide Bandgap Perovskite Solar Cells Through Ultraviolet Light-Absorbing Passivator.
    Dai Y; Ge X; Shi B; Wang P; Zhao Y; Zhang X
    Small Methods; 2024 Mar; ():e2301793. PubMed ID: 38501843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel 4,4'-Bipiperidine-Based Organic Salt for Efficient and Stable 2D-3D Perovskite Solar Cells.
    Li Y; Zhang J; Xiang J; Hu H; Zhong H; Shi Y
    ACS Appl Mater Interfaces; 2022 May; 14(19):22324-22331. PubMed ID: 35532952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Efficient and Stable Perovskite Solar Cells: Competitive Crystallization Strategy and Synergistic Passivation.
    Jiao B; Che Z; Quan Z; Wu W; Hu K; Li X; Liu F
    Small; 2023 Aug; 19(35):e2301630. PubMed ID: 37118850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical passivation of the under coordinated Pb
    Abdel-Shakour M; Chowdhury TH; Matsuishi K; Moritomo Y; Islam A
    Photochem Photobiol Sci; 2021 Mar; 20(3):357-367. PubMed ID: 33721271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrazone dye passivator for high-performance and stable perovskite solar cells.
    Sun Z; Gu N; Feng Y; Song L; Du P; Jiang H; Xiong J
    Dalton Trans; 2023 Feb; 52(6):1702-1710. PubMed ID: 36651567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Passivation Using 2D Perovskites toward Efficient and Stable Perovskite Solar Cells.
    Wu G; Liang R; Ge M; Sun G; Zhang Y; Xing G
    Adv Mater; 2022 Feb; 34(8):e2105635. PubMed ID: 34865245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient and Stable Perovskite Solar Cells by Tailoring of Interfaces.
    Xia J; Sohail M; Nazeeruddin MK
    Adv Mater; 2023 Aug; 35(31):e2211324. PubMed ID: 36869425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.