These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37464226)

  • 1. Study of creosote transport properties in sandy and clay soils.
    da Rocha Soares LC; Mendes GP; Viegas RMA; Barbosa AM; Yoshikawa NK; Nascimento CAOD
    Environ Monit Assess; 2023 Jul; 195(8):967. PubMed ID: 37464226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ebullition-facilitated mobilization of trapped dense non-aqueous phase liquid at residual saturation from sandy sediments.
    Wu J; Nunez Garcia A; Mumford KG
    J Environ Manage; 2022 Sep; 317():115448. PubMed ID: 35660826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphase flow and transport in fractured clay/sand sequences.
    Reynolds DA; Kueper BH
    J Contam Hydrol; 2001 Sep; 51(1-2):41-62. PubMed ID: 11530926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophysical properties of sandy clay contaminated by petroleum hydrocarbon.
    Hewelke E; Gozdowski D
    Environ Sci Pollut Res Int; 2020 Mar; 27(9):9697-9706. PubMed ID: 31925692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hydrophysical properties on pipe formation in tropical soils.
    Bovi RC; Pessoa TN; Boschi RS; Castilho SCP; Libardi PL; Cooper M
    Sci Total Environ; 2022 Jun; 827():154296. PubMed ID: 35257773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydraulic conductivity prediction for sandy soils.
    Cronican AE; Gribb MM
    Ground Water; 2004; 42(3):459-64. PubMed ID: 15161164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk assessment of gas oil and kerosene contamination on some properties of silty clay soil.
    Fallah M; Shabanpor M; Zakerinia M; Ebrahimi S
    Environ Monit Assess; 2015 Jul; 187(7):437. PubMed ID: 26085279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transport behaviour of elemental mercury DNAPL in saturated porous media: analysis of field observations and two-phase flow modelling.
    Sweijen T; Hartog N; Marsman A; Keijzer TJ
    J Contam Hydrol; 2014 Jun; 161():24-34. PubMed ID: 24748026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-at-a-time sensitivity analysis of pollutant loadings to subsurface properties for the assessment of soil and groundwater pollution potential.
    Yu S; Yun ST; Hwang SI; Chae G
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21216-21238. PubMed ID: 31115822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycyclic aromatic hydrocarbons remobilization from contaminated porous media by (bio)surfactants washing.
    Cazals F; Colombano S; Huguenot D; Betelu S; Galopin N; Perrault A; Simonnot MO; Ignatiadis I; Rossano S; Crampon M
    J Contam Hydrol; 2022 Dec; 251():104065. PubMed ID: 36054960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of nitrate, phosphate, nickel and lead on soils: Risk of groundwater contamination.
    Abdelwaheb M; Jebali K; Dhaouadi H; Dridi-Dhaouadi S
    Ecotoxicol Environ Saf; 2019 Sep; 179():182-187. PubMed ID: 31048214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetically enhanced bioremediation of creosote-contaminated soil: laboratory and field studies.
    Suni S; Malinen E; Kosonen J; Silvennoinen H; Romantschuk M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):277-87. PubMed ID: 17365294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.
    Paudel I; Cohen S; Shaviv A; Bar-Tal A; Bernstein N; Heuer B; Ephrath J
    Tree Physiol; 2016 Jun; 36(6):770-85. PubMed ID: 27022106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate and transport of chlormequat in subsurface environments.
    Juhler RK; Henriksen T; Rosenbom AE; Kjaer J
    Environ Sci Pollut Res Int; 2010 Jul; 17(6):1245-56. PubMed ID: 20177799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating biodegradation and electroosmosis for the enhanced removal of polycyclic aromatic hydrocarbons from creosote-polluted soils.
    Niqui-Arroyo JL; Ortega-Calvo JJ
    J Environ Qual; 2007; 36(5):1444-51. PubMed ID: 17766823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of nanoscale zero-valent iron on hydraulic conductivity of a residual clayey soil and modeling of the filtration parameter.
    Reginatto C; Cecchin I; Salvagni Heineck K; Thomé A; Reddy KR
    Environ Sci Pollut Res Int; 2020 Mar; 27(9):9288-9296. PubMed ID: 31916159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil texture is an important factor determining how microplastics affect soil hydraulic characteristics.
    Guo Z; Li P; Yang X; Wang Z; Lu B; Chen W; Wu Y; Li G; Zhao Z; Liu G; Ritsema C; Geissen V; Xue S
    Environ Int; 2022 Jul; 165():107293. PubMed ID: 35609499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-empirical modelling of hydraulic conductivity of clayey soils exposed to deionized and saline environments.
    Hedayati-Azar A; Sadeghi H
    J Contam Hydrol; 2022 Aug; 249():104042. PubMed ID: 35749934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of clay in a sandy soil on saturated/unsaturated pore water flow and dissolved chloride transport from road salt applications.
    Higashino M; Aso D; Stefan HG
    Environ Sci Pollut Res Int; 2021 May; 28(18):22693-22704. PubMed ID: 33423196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory study of creosote removal from sand at elevated temperatures.
    Hicknell BN; Mumford KG; Kueper BH
    J Contam Hydrol; 2018 Dec; 219():40-49. PubMed ID: 30396790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.