These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37464226)

  • 21. Effects of tire wear particles on the water retention of soils with different textures in the full moisture range.
    Verdi A; Naseri M
    J Contam Hydrol; 2024 May; 264():104345. PubMed ID: 38657472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of clay content on the mobilization efficiency of per- and polyfluoroalkyl substances (PFAS) from soils by electrokinetics and hydraulic flushing.
    Abou-Khalil C; Kewalramani J; Zhang Z; Sarkar D; Abrams S; Boufadel MC
    Environ Pollut; 2023 Apr; 322():121160. PubMed ID: 36716947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiphase flow and transport through fractured heterogeneous porous media.
    Reynolds DA; Kueper BH
    J Contam Hydrol; 2004 Jul; 71(1-4):89-110. PubMed ID: 15145563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sorption and desorption of salinomycin sodium in clay, loamy sand, and sandy soils.
    Ramaswamy J; Prasher SO; Patel RM
    Environ Monit Assess; 2012 Sep; 184(9):5363-9. PubMed ID: 21931945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Divergent responses of earthworms (Eisenia fetida) in sandy loam and clay soils to cerium dioxide nanoparticles.
    Chen D; Xu W; Cao S; Xia Y; Du W; Yin Y; Guo H
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):5231-5241. PubMed ID: 35982389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of alcohol addition on the movement of petroleum hydrocarbon fuels in soil.
    Adam G; Gamoh K; Morris DG; Duncan H
    Sci Total Environ; 2002 Mar; 286(1-3):15-25. PubMed ID: 11886090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.
    Vogt DJ; Vogt KA; Gmur SJ; Scullion JJ; Suntana AS; Daryanto S; Sigurðardóttir R
    Environ Res; 2016 Jan; 144(Pt B):27-38. PubMed ID: 26552634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrokinetic enhancement of phenanthrene biodegradation in creosote-polluted clay soil.
    Niqui-Arroyo JL; Bueno-Montes M; Posada-Baquero R; Ortega-Calvo JJ
    Environ Pollut; 2006 Jul; 142(2):326-32. PubMed ID: 16338043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stochastical analysis of surfactant-enhanced remediation of denser-than-water nonaqueous phase liquid (DNAPL)-contaminated soils.
    Zhang R; Wood AL; Enfield CG; Jeong SW
    J Environ Qual; 2003; 32(3):957-65. PubMed ID: 12809296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiphase distribution and migration characteristics of heavy metals in typical sandy intertidal zones: insights from solid-liquid partitioning.
    Liao J; Qian X; Liu F; Deng S; Lin H; Liu X; Wei C
    Ecotoxicol Environ Saf; 2021 Jan; 208():111674. PubMed ID: 33396006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and calibration of an organic diffusive probe to extend the diffusion gradient technique to organic pollutants.
    Bondarenko A; Sani D; Ruello ML
    Int J Environ Res Public Health; 2011 Aug; 8(8):3318-32. PubMed ID: 21909309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.
    Yoon H; Valocchi AJ; Werth CJ
    J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of an immobilization process for PFAS contaminated soils.
    Barth E; McKernan J; Bless D; Dasu K
    J Environ Manage; 2021 Oct; 296():113069. PubMed ID: 34225046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of soil texture in unsaturated zone on soil nitrate accumulation and groundwater nitrate contamination in a marginal oasis in the middle of Heihe River basin].
    Su YZ; Yang X; Yang R
    Huan Jing Ke Xue; 2014 Oct; 35(10):3683-91. PubMed ID: 25693370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mathematical prediction of imidacloprid persistence in two Croatian soils with different texture, organic matter content and acidity under laboratory conditions.
    Broznić D; Milin Č
    J Environ Sci Health B; 2013; 48(11):906-18. PubMed ID: 23998302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic signatures of a creosote oil contaminated site: case study in São Paulo, Brazil.
    de Moraes CS; Ustra AT; Barbosa AM; Imbernon RAL; Tengan CMU
    Sci Rep; 2022 Dec; 12(1):21853. PubMed ID: 36528719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioremediation of creosote-contaminated soil in South Africa by landfarming.
    Atagana HI
    J Appl Microbiol; 2004; 96(3):510-20. PubMed ID: 14962131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of biochar amendment on sorption-desorption and dissipation of 17α‑ethinylestradiol in sandy loam and clay soils.
    Wei Z; Wang JJ; Hernandez AB; Warren A; Park JH; Meng Y; Dodla SK; Jeong C
    Sci Total Environ; 2019 Oct; 686():959-967. PubMed ID: 31200312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retention and loss of water extractable carbon in soils: effect of clay properties.
    Nguyen TT; Marschner P
    Sci Total Environ; 2014 Feb; 470-471():400-6. PubMed ID: 24144942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of pollutant partition in sandy soils with different water contents.
    Albergaria JT; Alvim-Ferraz Mda C; Delerue-Matos MC
    Environ Monit Assess; 2010 Dec; 171(1-4):171-80. PubMed ID: 20069453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.