These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 37464464)
1. Pumped and pumpless microphysiological systems to study (nano)therapeutics. Lee EJ; Krassin ZL; Abaci HE; Mahler GJ; Esch MB Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1911. PubMed ID: 37464464 [TBL] [Abstract][Full Text] [Related]
2. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Watson DE; Hunziker R; Wikswo JP Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799 [TBL] [Abstract][Full Text] [Related]
3. UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems. Wang YI; Shuler ML Lab Chip; 2018 Aug; 18(17):2563-2574. PubMed ID: 30046784 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and Use of a Pumpless Microfluidic Lymphatic Vessel Chip. Fathi P; Esch MB Methods Mol Biol; 2022; 2373():177-199. PubMed ID: 34520013 [TBL] [Abstract][Full Text] [Related]
5. Microphysiological Systems (Tissue Chips) and their Utility for Rare Disease Research. Low LA; Tagle DA Adv Exp Med Biol; 2017; 1031():405-415. PubMed ID: 29214585 [TBL] [Abstract][Full Text] [Related]
6. Design and demonstration of a pumpless 14 compartment microphysiological system. Miller PG; Shuler ML Biotechnol Bioeng; 2016 Oct; 113(10):2213-27. PubMed ID: 27070809 [TBL] [Abstract][Full Text] [Related]
7. Standardizing designed and emergent quantitative features in microphysiological systems. Nahon DM; Moerkens R; Aydogmus H; Lendemeijer B; Martínez-Silgado A; Stein JM; Dostanić M; Frimat JP; Gontan C; de Graaf MNS; Hu M; Kasi DG; Koch LS; Le KTT; Lim S; Middelkamp HHT; Mooiweer J; Motreuil-Ragot P; Niggl E; Pleguezuelos-Manzano C; Puschhof J; Revyn N; Rivera-Arbelaez JM; Slager J; Windt LM; Zakharova M; van Meer BJ; Orlova VV; de Vrij FMS; Withoff S; Mastrangeli M; van der Meer AD; Mummery CL Nat Biomed Eng; 2024 Aug; 8(8):941-962. PubMed ID: 39187664 [TBL] [Abstract][Full Text] [Related]
8. Human organ chips for regenerative pharmacology. Goyal G; Belgur C; Ingber DE Pharmacol Res Perspect; 2024 Feb; 12(1):e01159. PubMed ID: 38149766 [TBL] [Abstract][Full Text] [Related]
9. [Development of Microphysiological Systems (MPSs) Based on Microfluidic Technology for Drug Discovery in Japan]. Kimura H Yakugaku Zasshi; 2023; 143(1):39-44. PubMed ID: 36596538 [TBL] [Abstract][Full Text] [Related]
10. Pumpless, modular, microphysiological systems enabling tunable perfusion for long-term cultivation of endothelialized lumens. Tronolone JJ; Lam J; Agrawal A; Sung K Biomed Microdevices; 2021 Apr; 23(2):25. PubMed ID: 33855605 [TBL] [Abstract][Full Text] [Related]
11. Standalone cell culture microfluidic device-based microphysiological system for automated cell observation and application in nephrotoxicity tests. Kimura H; Nakamura H; Goto T; Uchida W; Uozumi T; Nishizawa D; Shinha K; Sakagami J; Doi K Lab Chip; 2024 Jan; 24(3):408-421. PubMed ID: 38131210 [TBL] [Abstract][Full Text] [Related]
12. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development. Hargrove-Grimes P; Low LA; Tagle DA Cells Tissues Organs; 2022; 211(3):269-281. PubMed ID: 34380142 [TBL] [Abstract][Full Text] [Related]
13. Organs-on-chips technologies - A guide from disease models to opportunities for drug development. Monteduro AG; Rizzato S; Caragnano G; Trapani A; Giannelli G; Maruccio G Biosens Bioelectron; 2023 Jul; 231():115271. PubMed ID: 37060819 [TBL] [Abstract][Full Text] [Related]
14. Organs-on-a-Chip. Low LA; Sutherland M; Lumelsky N; Selimovic S; Lundberg MS; Tagle DA Adv Exp Med Biol; 2020; 1230():27-42. PubMed ID: 32285363 [TBL] [Abstract][Full Text] [Related]
15. Unlocking the Potential of Organ-on-Chip Models through Pumpless and Tubeless Microfluidics. Delon LC; Nilghaz A; Cheah E; Prestidge C; Thierry B Adv Healthc Mater; 2020 Jun; 9(11):e1901784. PubMed ID: 32342669 [TBL] [Abstract][Full Text] [Related]
16. Testing the Effectiveness of Kim K; Jeon HM; Choi KC; Sung GY Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486109 [TBL] [Abstract][Full Text] [Related]
17. Microphysiological systems for human aging research. Park S; Laskow TC; Chen J; Guha P; Dawn B; Kim DH Aging Cell; 2024 Mar; 23(3):e14070. PubMed ID: 38180277 [TBL] [Abstract][Full Text] [Related]
18. The Current Status and Use of Microphysiological Systems by the Pharmaceutical Industry: The International Consortium for Innovation and Quality Microphysiological Systems Affiliate Survey and Commentary. Baker TK; Van Vleet TR; Mahalingaiah PK; Grandhi TSP; Evers R; Ekert J; Gosset JR; Chacko SA; Kopec AK Drug Metab Dispos; 2024 Feb; 52(3):198-209. PubMed ID: 38123948 [TBL] [Abstract][Full Text] [Related]
19. Pumpless microfluidic devices for generating healthy and diseased endothelia. Yang Y; Fathi P; Holland G; Pan D; Wang NS; Esch MB Lab Chip; 2019 Sep; 19(19):3212-3219. PubMed ID: 31455960 [TBL] [Abstract][Full Text] [Related]
20. Microphysiological Systems: Design, Fabrication, and Applications. Wang K; Man K; Liu J; Liu Y; Chen Q; Zhou Y; Yang Y ACS Biomater Sci Eng; 2020 Jun; 6(6):3231-3257. PubMed ID: 33204830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]