These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37464581)

  • 1. Feasibility evaluation of novel AI-based deep-learning contouring algorithm for radiotherapy.
    Maduro Bustos LA; Sarkar A; Doyle LA; Andreou K; Noonan J; Nurbagandova D; Shah SA; Irabor OC; Mourtada F
    J Appl Clin Med Phys; 2023 Nov; 24(11):e14090. PubMed ID: 37464581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a deep image-to-image network (DI2IN) auto-segmentation algorithm across a network of cancer centers.
    Rayn K; Gupta V; Mulinti S; Clark R; Magliari A; Chaudhari S; Garima G; Beriwal S
    J Cancer Res Ther; 2024 Apr; 20(3):1020-1025. PubMed ID: 39023610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation.
    Marschner S; Datar M; Gaasch A; Xu Z; Grbic S; Chabin G; Geiger B; Rosenman J; Corradini S; Niyazi M; Heimann T; Möhler C; Vega F; Belka C; Thieke C
    Radiat Oncol; 2022 Jul; 17(1):129. PubMed ID: 35869525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases.
    Wu X; Udupa JK; Tong Y; Odhner D; Pednekar GV; Simone CB; McLaughlin D; Apinorasethkul C; Apinorasethkul O; Lukens J; Mihailidis D; Shammo G; James P; Tiwari A; Wojtowicz L; Camaratta J; Torigian DA
    Med Image Anal; 2019 May; 54():45-62. PubMed ID: 30831357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center.
    D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical evaluation of deep learning and atlas-based auto-segmentation for critical organs at risk in radiation therapy.
    Gibbons E; Hoffmann M; Westhuyzen J; Hodgson A; Chick B; Last A
    J Med Radiat Sci; 2023 Apr; 70 Suppl 2(Suppl 2):15-25. PubMed ID: 36148621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A clinical and time savings evaluation of a deep learning automatic contouring algorithm.
    Ginn JS; Gay HA; Hilliard J; Shah J; Mistry N; Möhler C; Hugo GD; Hao Y
    Med Dosim; 2023 Spring; 48(1):55-60. PubMed ID: 36550000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gross failure rates and failure modes for a commercial AI-based auto-segmentation algorithm in head and neck cancer patients.
    Temple SWP; Rowbottom CG
    J Appl Clin Med Phys; 2024 Jun; 25(6):e14273. PubMed ID: 38263866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers.
    Wong J; Huang V; Wells D; Giambattista J; Giambattista J; Kolbeck C; Otto K; Saibishkumar EP; Alexander A
    Radiat Oncol; 2021 Jun; 16(1):101. PubMed ID: 34103062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of auto-segmentation for brachytherapy of postoperative cervical cancer using deep learning-based workflow.
    Wang J; Chen Y; Tu Y; Xie H; Chen Y; Luo L; Zhou P; Tang Q
    Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36753762
    [No Abstract]   [Full Text] [Related]  

  • 13. Initial Evaluation of a Novel Cone-Beam CT-Based Semi-Automated Online Adaptive Radiotherapy System for Head and Neck Cancer Treatment - A Timing and Automation Quality Study.
    Yoon SW; Lin H; Alonso-Basanta M; Anderson N; Apinorasethkul O; Cooper K; Dong L; Kempsey B; Marcel J; Metz J; Scheuermann R; Li T
    Cureus; 2020 Aug; 12(8):e9660. PubMed ID: 32923257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer.
    Guo H; Wang J; Xia X; Zhong Y; Peng J; Zhang Z; Hu W
    Radiat Oncol; 2021 Jun; 16(1):113. PubMed ID: 34162410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General and custom deep learning autosegmentation models for organs in head and neck, abdomen, and male pelvis.
    Amjad A; Xu J; Thill D; Lawton C; Hall W; Awan MJ; Shukla M; Erickson BA; Li XA
    Med Phys; 2022 Mar; 49(3):1686-1700. PubMed ID: 35094390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning algorithm performance in contouring head and neck organs at risk: a systematic review and single-arm meta-analysis.
    Liu P; Sun Y; Zhao X; Yan Y
    Biomed Eng Online; 2023 Nov; 22(1):104. PubMed ID: 37915046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. vOARiability: Interobserver and intermodality variability analysis in OAR contouring from head and neck CT and MR images.
    Podobnik G; Ibragimov B; Peterlin P; Strojan P; Vrtovec T
    Med Phys; 2024 Mar; 51(3):2175-2186. PubMed ID: 38230752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.
    Wong J; Fong A; McVicar N; Smith S; Giambattista J; Wells D; Kolbeck C; Giambattista J; Gondara L; Alexander A
    Radiother Oncol; 2020 Mar; 144():152-158. PubMed ID: 31812930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.
    van Dijk LV; Van den Bosch L; Aljabar P; Peressutti D; Both S; J H M Steenbakkers R; Langendijk JA; Gooding MJ; Brouwer CL
    Radiother Oncol; 2020 Jan; 142():115-123. PubMed ID: 31653573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic contouring system for cervical cancer using convolutional neural networks.
    Rhee DJ; Jhingran A; Rigaud B; Netherton T; Cardenas CE; Zhang L; Vedam S; Kry S; Brock KK; Shaw W; O'Reilly F; Parkes J; Burger H; Fakie N; Trauernicht C; Simonds H; Court LE
    Med Phys; 2020 Nov; 47(11):5648-5658. PubMed ID: 32964477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.