These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37464593)
1. X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula. Schörner M; Bethkenhagen M; Döppner T; Kraus D; Fletcher LB; Glenzer SH; Redmer R Phys Rev E; 2023 Jun; 107(6-2):065207. PubMed ID: 37464593 [TBL] [Abstract][Full Text] [Related]
2. X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition. Baczewski AD; Shulenburger L; Desjarlais MP; Hansen SB; Magyar RJ Phys Rev Lett; 2016 Mar; 116(11):115004. PubMed ID: 27035307 [TBL] [Abstract][Full Text] [Related]
3. Ab initio approach to model x-ray diffraction in warm dense matter. Vorberger J; Gericke DO Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033112. PubMed ID: 25871229 [TBL] [Abstract][Full Text] [Related]
4. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter. Johnson WR; Nilsen J Phys Rev E; 2016 Mar; 93(3):033205. PubMed ID: 27078473 [TBL] [Abstract][Full Text] [Related]
5. Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium. Harbour L; Dharma-Wardana MW; Klug DD; Lewis LJ Phys Rev E; 2016 Nov; 94(5-1):053211. PubMed ID: 27967139 [TBL] [Abstract][Full Text] [Related]
6. Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasmas. Fortmann C; Wierling A; Röpke G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026405. PubMed ID: 20365663 [TBL] [Abstract][Full Text] [Related]
7. Ab initio calculation of the ion feature in x-ray Thomson scattering. Plagemann KU; Rüter HR; Bornath T; Shihab M; Desjarlais MP; Fortmann C; Glenzer SH; Redmer R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013103. PubMed ID: 26274290 [TBL] [Abstract][Full Text] [Related]
8. Average-atom model combined with the hypernetted chain approximation applied to warm dense matter. Hou Y; Bredow R; Yuan J; Redmer R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033114. PubMed ID: 25871231 [TBL] [Abstract][Full Text] [Related]
9. Real-time ab initio simulation of inelastic electron scattering using the exact, density functional, and alternative approaches. Lee Y; Yao X; Fischetti MV; Cho K Phys Chem Chem Phys; 2020 Apr; 22(16):8616-8624. PubMed ID: 32266880 [TBL] [Abstract][Full Text] [Related]
10. Static Electronic Density Response of Warm Dense Hydrogen: Ab Initio Path Integral Monte Carlo Simulations. Böhme M; Moldabekov ZA; Vorberger J; Dornheim T Phys Rev Lett; 2022 Aug; 129(6):066402. PubMed ID: 36018668 [TBL] [Abstract][Full Text] [Related]
11. Electronic excitation spectra of cerium oxides: from Pedrielli A; de Vera P; Trevisanutto PE; Pugno NM; Garcia-Molina R; Abril I; Taioli S; Dapor M Phys Chem Chem Phys; 2021 Sep; 23(35):19173-19187. PubMed ID: 34357365 [TBL] [Abstract][Full Text] [Related]
12. Inelastic scattering of electrons in water from first principles: cross sections and inelastic mean free path for use in Monte Carlo track-structure simulations of biological damage. Koval NE; Koval P; Da Pieve F; Kohanoff J; Artacho E; Emfietzoglou D R Soc Open Sci; 2022 May; 9(5):212011. PubMed ID: 35619995 [TBL] [Abstract][Full Text] [Related]
13. Computational approaches for XANES, VtC-XES, and RIXS using linear-response time-dependent density functional theory based methods. Nascimento DR; Govind N Phys Chem Chem Phys; 2022 Jun; 24(24):14680-14691. PubMed ID: 35699090 [TBL] [Abstract][Full Text] [Related]
14. Predictions of x-ray scattering spectra for warm dense matter. Souza AN; Perkins DJ; Starrett CE; Saumon D; Hansen SB Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023108. PubMed ID: 25353587 [TBL] [Abstract][Full Text] [Related]
15. Density Functional Theory Based Methods for the Calculation of X-ray Spectroscopy. Besley NA Acc Chem Res; 2020 Jul; 53(7):1306-1315. PubMed ID: 32613827 [TBL] [Abstract][Full Text] [Related]
16. Ab initio simulations for the ion-ion structure factor of warm dense aluminum. Rüter HR; Redmer R Phys Rev Lett; 2014 Apr; 112(14):145007. PubMed ID: 24765982 [TBL] [Abstract][Full Text] [Related]
17. Ab initio dielectric response function of diamond and other relevant high pressure phases of carbon. Ramakrishna K; Vorberger J J Phys Condens Matter; 2020 Feb; 32(9):095401. PubMed ID: 31703214 [TBL] [Abstract][Full Text] [Related]
18. Extracting Inelastic Scattering Cross Sections for Finite and Aperiodic Materials from Electronic Dynamics Simulations. Lingerfelt DB; Yoshimura A; Jakowski J; Ganesh P; Sumpter BG J Chem Theory Comput; 2022 Dec; 18(12):7093-7107. PubMed ID: 36375179 [TBL] [Abstract][Full Text] [Related]
19. Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering. Kritcher AL; Neumayer P; Brown CR; Davis P; Döppner T; Falcone RW; Gericke DO; Gregori G; Holst B; Landen OL; Lee HJ; Morse EC; Pelka A; Redmer R; Roth M; Vorberger J; Wünsch K; Glenzer SH Phys Rev Lett; 2009 Dec; 103(24):245004. PubMed ID: 20366206 [TBL] [Abstract][Full Text] [Related]
20. X-ray Thomson-scattering measurements of density and temperature in shock-compressed beryllium. Lee HJ; Neumayer P; Castor J; Döppner T; Falcone RW; Fortmann C; Hammel BA; Kritcher AL; Landen OL; Lee RW; Meyerhofer DD; Munro DH; Redmer R; Regan SP; Weber S; Glenzer SH Phys Rev Lett; 2009 Mar; 102(11):115001. PubMed ID: 19392206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]