These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Hydrodynamic modulation instability triggered by a two-wave system. He Y; Wang J; Kibler B; Chabchoub A Chaos; 2024 Oct; 34(10):. PubMed ID: 39356202 [TBL] [Abstract][Full Text] [Related]
5. Periodic orbits in Fermi-Pasta-Ulam-Tsingou systems. Karve N; Rose N; Campbell D Chaos; 2024 Sep; 34(9):. PubMed ID: 39288774 [TBL] [Abstract][Full Text] [Related]
6. Robustness and stability of doubly periodic patterns of the focusing nonlinear Schrödinger equation. Yin HM; Li JH; Zheng Z; Chiang KS; Chow KW Chaos; 2024 Jan; 34(1):. PubMed ID: 38231179 [TBL] [Abstract][Full Text] [Related]
7. Recurrence recovery in heterogeneous Fermi-Pasta-Ulam-Tsingou systems. Li Z; Porter MA; Choubey B Chaos; 2023 Sep; 33(9):. PubMed ID: 37676112 [TBL] [Abstract][Full Text] [Related]
8. Extreme spectral asymmetry of Akhmediev breathers and Fermi-Pasta-Ulam recurrence in a Manakov system. Chen SC; Liu C; Yao X; Zhao LC; Akhmediev N Phys Rev E; 2021 Aug; 104(2-1):024215. PubMed ID: 34525585 [TBL] [Abstract][Full Text] [Related]
9. Fermi-Pasta-Ulam phenomena and persistent breathers in the harmonic trap. Biasi A; Evnin O; Malomed BA Phys Rev E; 2021 Sep; 104(3-1):034210. PubMed ID: 34654088 [TBL] [Abstract][Full Text] [Related]
10. The Metastable State of Fermi-Pasta-Ulam-Tsingou Models. Reiss KA; Campbell DK Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832666 [TBL] [Abstract][Full Text] [Related]
11. Quasiperiodicity in the α-Fermi-Pasta-Ulam-Tsingou problem revisited: An approach using ideas from wave turbulence. Ganapa S Chaos; 2023 Sep; 33(9):. PubMed ID: 37656916 [TBL] [Abstract][Full Text] [Related]
12. Near-integrable dynamics of the Fermi-Pasta-Ulam-Tsingou problem. Hofstrand A Phys Rev E; 2024 Mar; 109(3-1):034204. PubMed ID: 38632816 [TBL] [Abstract][Full Text] [Related]
13. Anatomy of the Akhmediev breather: Cascading instability, first formation time, and Fermi-Pasta-Ulam recurrence. Chin SA; Ashour OA; Belić MR Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063202. PubMed ID: 26764845 [TBL] [Abstract][Full Text] [Related]