These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37464703)
1. Impact of nanodroplets on cone-textured surfaces. Liu H; Zhang J; Luo J; Wen D Phys Rev E; 2023 Jun; 107(6-2):065101. PubMed ID: 37464703 [TBL] [Abstract][Full Text] [Related]
2. Molecular Dynamics Simulation of Nanodroplets Impacting Stripe-Textured Surfaces. Li R; Zhu P; Yin Z; Xu Y Langmuir; 2022 Jun; 38(22):7058-7066. PubMed ID: 35608995 [TBL] [Abstract][Full Text] [Related]
3. Nanodroplets Impact on Rough Surfaces: A Simulation and Theoretical Study. Gao S; Liao Q; Liu W; Liu Z Langmuir; 2018 May; 34(20):5910-5917. PubMed ID: 29708343 [TBL] [Abstract][Full Text] [Related]
4. Oblique impingement of binary droplets at the nanoscale on superhydrophobic surfaces: A molecular dynamics study. Zhang A; Cui K; Tian Y; Zhang B; Wang T; He X J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748016 [TBL] [Abstract][Full Text] [Related]
5. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. Hao C; Li J; Liu Y; Zhou X; Liu Y; Liu R; Che L; Zhou W; Sun D; Li L; Xu L; Wang Z Nat Commun; 2015 Aug; 6():7986. PubMed ID: 26250403 [TBL] [Abstract][Full Text] [Related]
6. Impingement of binary nanodroplets on rough surfaces: a molecular dynamics study. Xue Y; Wang H; Huang S; Bie X; Wang G; Fang M Sci Rep; 2024 Aug; 14(1):19030. PubMed ID: 39152235 [TBL] [Abstract][Full Text] [Related]
7. Universal Model for the Maximum Spreading Factor of Impacting Nanodroplets: From Hydrophilic to Hydrophobic Surfaces. Wang YB; Wang YF; Gao SR; Yang YR; Wang XD; Chen M Langmuir; 2020 Aug; 36(31):9306-9316. PubMed ID: 32697096 [TBL] [Abstract][Full Text] [Related]
8. Droplet Impact on Anisotropic Superhydrophobic Surfaces. Guo C; Zhao D; Sun Y; Wang M; Liu Y Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832 [TBL] [Abstract][Full Text] [Related]
9. Successive Rebounds of Impinging Water Droplets on Superhydrophobic Surfaces. Wang Y; Zhao Y; Sun L; Mehrizi AA; Lin S; Guo J; Chen L Langmuir; 2022 Mar; 38(12):3860-3867. PubMed ID: 35293214 [TBL] [Abstract][Full Text] [Related]
10. Contact Time of a Bouncing Nanodroplet. Xie FF; Lv SH; Yang YR; Wang XD J Phys Chem Lett; 2020 Apr; 11(8):2818-2823. PubMed ID: 32197041 [TBL] [Abstract][Full Text] [Related]
11. Ultrafast Propulsion of Water Nanodroplets on Patterned Graphene. Papadopoulou E; Megaridis CM; Walther JH; Koumoutsakos P ACS Nano; 2019 May; 13(5):5465-5472. PubMed ID: 31025854 [TBL] [Abstract][Full Text] [Related]
12. Droplet impacting on pillared hydrophobic surfaces with different solid fractions. Xia L; Yang Z; Chen F; Liu T; Tian Y; Zhang D J Colloid Interface Sci; 2024 Mar; 658():61-73. PubMed ID: 38100977 [TBL] [Abstract][Full Text] [Related]
13. Molecular Dynamics Simulation on Behaviors of Water Nanodroplets Impinging on Moving Surfaces. Zhang H; Pan L; Xie X Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055264 [TBL] [Abstract][Full Text] [Related]
14. Numerical and analytical study of the impinging and bouncing phenomena of droplets on superhydrophobic surfaces with microtextured structures. Quan Y; Zhang LZ Langmuir; 2014 Oct; 30(39):11640-9. PubMed ID: 25203603 [TBL] [Abstract][Full Text] [Related]
15. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces. Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793 [TBL] [Abstract][Full Text] [Related]
16. A Relation for Nanodroplet Diffusion on Smooth Surfaces. Li C; Huang J; Li Z Sci Rep; 2016 May; 6():26488. PubMed ID: 27215471 [TBL] [Abstract][Full Text] [Related]
17. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures. Lian Z; Xu J; Ren W; Wang Z; Yu H Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520 [TBL] [Abstract][Full Text] [Related]
18. Influence of Microstructure Topography on the Oblique Impact Dynamics of Drops on Superhydrophobic Surfaces. Aboud DGK; Kietzig AM Langmuir; 2021 Apr; 37(15):4678-4689. PubMed ID: 33797264 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of Coalescence-Induced Nanodroplet Jumping on Superhydrophobic Surfaces. Xie FF; Lu G; Wang XD; Wang DQ Langmuir; 2018 Sep; 34(37):11195-11203. PubMed ID: 30133297 [TBL] [Abstract][Full Text] [Related]
20. Coalescence-Induced Swift Jumping of Nanodroplets on Curved Surfaces. He X; Zhao L; Cheng J Langmuir; 2019 Jul; 35(30):9979-9987. PubMed ID: 31282161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]