These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37464703)
21. Spontaneous dewetting transition of nanodroplets on nanopillared surface. Wang S; Wang C; Peng Z; Chen S Nanotechnology; 2020 May; 31(22):225502. PubMed ID: 32066123 [TBL] [Abstract][Full Text] [Related]
22. Hypergyrating Droplets Generated on a Selective Laser-Textured Heterogeneous Wettability Surface. Pan Q; Sun B; Liu W; Xue W; Cao Y Langmuir; 2020 Jul; 36(28):8123-8128. PubMed ID: 32564607 [TBL] [Abstract][Full Text] [Related]
23. Critical and Optimal Wall Conditions for Coalescence-Induced Droplet Jumping on Textured Superhydrophobic Surfaces. Yin C; Wang T; Che Z; Jia M; Sun K Langmuir; 2019 Dec; 35(49):16201-16209. PubMed ID: 31738548 [TBL] [Abstract][Full Text] [Related]
25. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153 [TBL] [Abstract][Full Text] [Related]
26. Molecular Dynamics Simulation of Water Nanodroplet Bounce Back from Flat and Nanopillared Surface. Koishi T; Yasuoka K; Zeng XC Langmuir; 2017 Oct; 33(39):10184-10192. PubMed ID: 28876073 [TBL] [Abstract][Full Text] [Related]
27. Flexible Teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning. Toma M; Loget G; Corn RM ACS Appl Mater Interfaces; 2014 Jul; 6(14):11110-7. PubMed ID: 24654844 [TBL] [Abstract][Full Text] [Related]
28. Water droplet impact on elastic superhydrophobic surfaces. Weisensee PB; Tian J; Miljkovic N; King WP Sci Rep; 2016 Jul; 6():30328. PubMed ID: 27461899 [TBL] [Abstract][Full Text] [Related]
29. Steerable directional bouncing and contact time reduction of impacting droplets on superhydrophobic stepped surfaces. Du J; Li Y; Wu X; Min Q J Colloid Interface Sci; 2023 Jan; 629(Pt A):1032-1044. PubMed ID: 36154970 [TBL] [Abstract][Full Text] [Related]
30. What Controls the Hole Formation of Nanodroplets: Hydrodynamic or Thermodynamic Instability? Wang YB; Wang YF; Ma Q; Yang YR; Lee DJ; Wang XD Langmuir; 2023 Aug; 39(33):11760-11768. PubMed ID: 37555811 [TBL] [Abstract][Full Text] [Related]
31. Viscous Droplet Impact on Nonwettable Textured Surfaces. Abolghasemibizaki M; Dilmaghani N; Mohammadi R; Castano CE Langmuir; 2019 Aug; 35(33):10752-10761. PubMed ID: 31339727 [TBL] [Abstract][Full Text] [Related]
32. Experimental investigation on the bouncing dynamics of a liquid marble during the impact on a hydrophilic surface. Akbari MJ; Bijarchi MA; Shafii MB J Colloid Interface Sci; 2024 May; 662():637-652. PubMed ID: 38367581 [TBL] [Abstract][Full Text] [Related]
33. Bouncing dynamics of droplets on nanopillar-arrayed surfaces: the effect of impact position. Zhu S; Ren H; Li X; Xiao Y; Li C Phys Chem Chem Phys; 2023 Feb; 25(6):4969-4979. PubMed ID: 36722908 [TBL] [Abstract][Full Text] [Related]
34. Self-Adaptive Droplet Bouncing on a Dual Gradient Surface. Wu C; Qin X; Zheng H; Xu Z; Song Y; Jin Y; Zhang H; Mo J; Li W; Lu J; Wang Z Small; 2023 Oct; ():e2304635. PubMed ID: 37786271 [TBL] [Abstract][Full Text] [Related]
35. Coalescence-Induced Jumping of Two Unequal-Sized Nanodroplets. Xie FF; Lu G; Wang XD; Wang BB Langmuir; 2018 Feb; 34(8):2734-2740. PubMed ID: 29384379 [TBL] [Abstract][Full Text] [Related]
36. Droplet Bouncing and Breakup during Impact on a Microgrooved Surface. Malla LK; Patil ND; Bhardwaj R; Neild A Langmuir; 2017 Sep; 33(38):9620-9631. PubMed ID: 28846429 [TBL] [Abstract][Full Text] [Related]
37. Axial spreading of droplet impact on ridged superhydrophobic surfaces. Hu Z; Zhang X; Gao S; Yuan Z; Lin Y; Chu F; Wu X J Colloid Interface Sci; 2021 Oct; 599():130-139. PubMed ID: 33933788 [TBL] [Abstract][Full Text] [Related]
38. Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces. Biroun MH; Haworth L; Agrawal P; Orme B; McHale G; Torun H; Rahmati M; Fu Y ACS Appl Mater Interfaces; 2021 Sep; 13(38):46076-46087. PubMed ID: 34520158 [TBL] [Abstract][Full Text] [Related]
39. Contact Time of Droplet Impact on Superhydrophobic Cylindrical Surfaces with a Ridge. Chen X; Wang YF; Yang YR; Wang XD; Lee DJ Langmuir; 2023 Dec; 39(50):18644-18653. PubMed ID: 38051278 [TBL] [Abstract][Full Text] [Related]
40. Directional motion of impacting drops on dual-textured surfaces. Vaikuntanathan V; Sivakumar D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036315. PubMed ID: 23031021 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]