These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 37464740)
1. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture. Yang Z; Cao Y; Shi Y; Qin F; Jiang C; Yang S Mol Plant; 2023 Oct; 16(10):1496-1517. PubMed ID: 37464740 [TBL] [Abstract][Full Text] [Related]
2. Genetic, molecular and physiological crosstalk during drought tolerance in maize (Zea mays): pathways to resilient agriculture. Peer LA; Bhat MY; Lone AA; Dar ZA; Mir BA Planta; 2024 Aug; 260(4):81. PubMed ID: 39196449 [TBL] [Abstract][Full Text] [Related]
3. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets. Numan M; Serba DD; Ligaba-Osena A Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068886 [TBL] [Abstract][Full Text] [Related]
4. The Adaptation and Tolerance of Major Cereals and Legumes to Important Abiotic Stresses. Rane J; Singh AK; Kumar M; Boraiah KM; Meena KK; Pradhan A; Prasad PVV Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884769 [TBL] [Abstract][Full Text] [Related]
6. "Omics" of maize stress response for sustainable food production: opportunities and challenges. Gong F; Yang L; Tai F; Hu X; Wang W OMICS; 2014 Dec; 18(12):714-32. PubMed ID: 25401749 [TBL] [Abstract][Full Text] [Related]
7. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of Plant Productivity in the Post-Genomics Era. Thao NP; Tran LS Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678 [TBL] [Abstract][Full Text] [Related]
9. New approaches to improve crop tolerance to biotic and abiotic stresses. González Guzmán M; Cellini F; Fotopoulos V; Balestrini R; Arbona V Physiol Plant; 2022 Jan; 174(1):e13547. PubMed ID: 34480798 [TBL] [Abstract][Full Text] [Related]
10. Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. Prasanna BM; Cairns JE; Zaidi PH; Beyene Y; Makumbi D; Gowda M; Magorokosho C; Zaman-Allah M; Olsen M; Das A; Worku M; Gethi J; Vivek BS; Nair SK; Rashid Z; Vinayan MT; Issa AB; San Vicente F; Dhliwayo T; Zhang X Theor Appl Genet; 2021 Jun; 134(6):1729-1752. PubMed ID: 33594449 [TBL] [Abstract][Full Text] [Related]
11. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. KhokharVoytas A; Shahbaz M; Maqsood MF; Zulfiqar U; Naz N; Iqbal UZ; Sara M; Aqeel M; Khalid N; Noman A; Zulfiqar F; Al Syaad KM; AlShaqhaa MA Funct Integr Genomics; 2023 Aug; 23(3):283. PubMed ID: 37642792 [TBL] [Abstract][Full Text] [Related]
12. Melatonin-Mediated Molecular Responses in Plants: Enhancing Stress Tolerance and Mitigating Environmental Challenges in Cereal Crop Production. Muhammad I; Ahmad S; Shen W Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674136 [TBL] [Abstract][Full Text] [Related]
13. Crop Wild Relatives: A Valuable Source of Tolerance to Various Abiotic Stresses. Kapazoglou A; Gerakari M; Lazaridi E; Kleftogianni K; Sarri E; Tani E; Bebeli PJ Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679041 [TBL] [Abstract][Full Text] [Related]
14. Transcription factors as molecular switches to regulate drought adaptation in maize. Leng P; Zhao J Theor Appl Genet; 2020 May; 133(5):1455-1465. PubMed ID: 31807836 [TBL] [Abstract][Full Text] [Related]
15. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest. Liu L; Basso B PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907 [TBL] [Abstract][Full Text] [Related]
16. The impact of climate change on maize chemical defenses. Yactayo-Chang JP; Block AK Biochem J; 2023 Aug; 480(16):1285-1298. PubMed ID: 37622733 [TBL] [Abstract][Full Text] [Related]
17. QTLian breeding for climate resilience in cereals: progress and prospects. Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800 [TBL] [Abstract][Full Text] [Related]
19. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Shi J; Gao H; Wang H; Lafitte HR; Archibald RL; Yang M; Hakimi SM; Mo H; Habben JE Plant Biotechnol J; 2017 Feb; 15(2):207-216. PubMed ID: 27442592 [TBL] [Abstract][Full Text] [Related]
20. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield. Obata T; Witt S; Lisec J; Palacios-Rojas N; Florez-Sarasa I; Yousfi S; Araus JL; Cairns JE; Fernie AR Plant Physiol; 2015 Dec; 169(4):2665-83. PubMed ID: 26424159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]