These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 37465109)
1. The predictive value of radiomics-based machine learning for peritoneal metastasis in gastric cancer patients: a systematic review and meta-analysis. Zhang F; Wu G; Chen N; Li R Front Oncol; 2023; 13():1196053. PubMed ID: 37465109 [TBL] [Abstract][Full Text] [Related]
2. The differential diagnosis value of radiomics-based machine learning in Parkinson's disease: a systematic review and meta-analysis. Bian J; Wang X; Hao W; Zhang G; Wang Y Front Aging Neurosci; 2023; 15():1199826. PubMed ID: 37484694 [TBL] [Abstract][Full Text] [Related]
3. Diagnostic performance of CT scan-based radiomics for prediction of lymph node metastasis in gastric cancer: a systematic review and meta-analysis. HajiEsmailPoor Z; Tabnak P; Baradaran B; Pashazadeh F; Aghebati-Maleki L Front Oncol; 2023; 13():1185663. PubMed ID: 37936604 [TBL] [Abstract][Full Text] [Related]
4. The value of machine learning in preoperative identification of lymph node metastasis status in endometrial cancer: a systematic review and meta-analysis. Ren Z; Chen B; Hong C; Yuan J; Deng J; Chen Y; Ye J; Li Y Front Oncol; 2023; 13():1289050. PubMed ID: 38173835 [TBL] [Abstract][Full Text] [Related]
5. Accuracy of radiomics in the diagnosis and preoperative high-risk assessment of endometrial cancer: a systematic review and meta-analysis. He J; Liu Y; Li J; Liu S Front Oncol; 2024; 14():1334546. PubMed ID: 38344208 [TBL] [Abstract][Full Text] [Related]
6. Machine learning for lymph node metastasis prediction of in patients with gastric cancer: A systematic review and meta-analysis. Li Y; Xie F; Xiong Q; Lei H; Feng P Front Oncol; 2022; 12():946038. PubMed ID: 36059703 [TBL] [Abstract][Full Text] [Related]
7. Performance of radiomics in the differential diagnosis of parotid tumors: a systematic review. Rao Y; Ma Y; Wang J; Xiao W; Wu J; Shi L; Guo L; Fan L Front Oncol; 2024; 14():1383323. PubMed ID: 39119093 [TBL] [Abstract][Full Text] [Related]
8. Artificial intelligence with magnetic resonance imaging for prediction of pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer: A systematic review and meta-analysis. Jia LL; Zheng QY; Tian JH; He DL; Zhao JX; Zhao LP; Huang G Front Oncol; 2022; 12():1026216. PubMed ID: 36313696 [TBL] [Abstract][Full Text] [Related]
9. Predictive value of radiomics-based machine learning for the disease-free survival in breast cancer: a systematic review and meta-analysis. Lu D; Yan Y; Jiang M; Sun S; Jiang H; Lu Y; Zhang W; Zhou X Front Oncol; 2023; 13():1173090. PubMed ID: 37664048 [TBL] [Abstract][Full Text] [Related]
10. The Value of Applying Machine Learning in Predicting the Time of Symptom Onset in Stroke Patients: Systematic Review and Meta-Analysis. Feng J; Zhang Q; Wu F; Peng J; Li Z; Chen Z J Med Internet Res; 2023 Oct; 25():e44895. PubMed ID: 37824198 [TBL] [Abstract][Full Text] [Related]
11. Diagnostic performance of radiomics in adrenal masses: A systematic review and meta-analysis. Zhang H; Lei H; Pang J Front Oncol; 2022; 12():975183. PubMed ID: 36119492 [TBL] [Abstract][Full Text] [Related]
12. Predictive performance of radiomics for peritoneal metastasis in patients with gastric cancer: a meta-analysis and radiomics quality assessment. Xue Y; Zhang H; Zheng Z; Liu X; Yin J; Zhang J J Cancer Res Clin Oncol; 2023 Oct; 149(13):12103-12113. PubMed ID: 37422882 [TBL] [Abstract][Full Text] [Related]
13. Diagnostic value of radiomics in predicting Ki-67 and cytokeratin 19 expression in hepatocellular carcinoma: a systematic review and meta-analysis. Zhou L; Chen Y; Li Y; Wu C; Xue C; Wang X Front Oncol; 2023; 13():1323534. PubMed ID: 38234405 [TBL] [Abstract][Full Text] [Related]
14. The diagnostic value of machine learning for the classification of malignant bone tumor: a systematic evaluation and meta-analysis. Li Y; Dong B; Yuan P Front Oncol; 2023; 13():1207175. PubMed ID: 37746301 [TBL] [Abstract][Full Text] [Related]
15. Diagnostic accuracy of radiomics-based machine learning for neoadjuvant chemotherapy response and survival prediction in gastric cancer patients: A systematic review and meta-analysis. Adili D; Mohetaer A; Zhang W Eur J Radiol; 2024 Apr; 173():111249. PubMed ID: 38382422 [TBL] [Abstract][Full Text] [Related]
16. Radiomics in distinguishing between lung adenocarcinoma and lung squamous cell carcinoma: a systematic review and meta-analysis. Shi L; Zhao J; Wei Z; Wu H; Sheng M Front Oncol; 2024; 14():1381217. PubMed ID: 39381037 [TBL] [Abstract][Full Text] [Related]
17. Predictive value of Ma N; Yang W; Wang Q; Cui C; Hu Y; Wu Z Front Oncol; 2024; 14():1281572. PubMed ID: 38361781 [TBL] [Abstract][Full Text] [Related]
18. Diagnostic Accuracy of Artificial Intelligence Based on Imaging Data for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Zhang J; Huang S; Xu Y; Wu J Front Oncol; 2022; 12():763842. PubMed ID: 35280776 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of non-enhanced computer tomography-based radiomics for predicting hematoma expansion: A meta-analysis. Jiang YW; Xu XJ; Wang R; Chen CM Front Oncol; 2022; 12():973104. PubMed ID: 36703784 [TBL] [Abstract][Full Text] [Related]
20. Current status and quality of radiomics studies for predicting outcome in acute ischemic stroke patients: a systematic review and meta-analysis. Kong J; Zhang D Front Neurol; 2023; 14():1335851. PubMed ID: 38229595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]