These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 37465413)

  • 1. Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition.
    Su D; Hu Z; Wu J; Shang P; Luo Z
    Front Neurorobot; 2023; 17():1186175. PubMed ID: 37465413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation.
    Zhu Z; Liu L; Zhang W; Jiang C; Wang X; Li J
    Front Neurosci; 2024; 18():1355052. PubMed ID: 38456145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and verification of a human-robot interaction system for upper limb exoskeleton rehabilitation.
    Wendong W; Hanhao L; Menghan X; Yang C; Xiaoqing Y; Xing M; Bing Z
    Med Eng Phys; 2020 May; 79():19-25. PubMed ID: 32205023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Musculoskeletal modeling and humanoid control of robots based on human gait data.
    Yu J; Zhang S; Wang A; Li W; Song L
    PeerJ Comput Sci; 2021; 7():e657. PubMed ID: 34458572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait Recognition for Lower Limb Exoskeletons Based on Interactive Information Fusion.
    Chen W; Li J; Zhu S; Zhang X; Men Y; Wu H
    Appl Bionics Biomech; 2022; 2022():9933018. PubMed ID: 35378794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism.
    Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J
    Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of Vision-Based Environmental Perception for Lower-Limb Exoskeleton Robots.
    Wang C; Pei Z; Fan Y; Qiu S; Tang Z
    Biomimetics (Basel); 2024 Apr; 9(4):. PubMed ID: 38667265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research of intent recognition in rehabilitation robots: a systematic review.
    Luo S; Meng Q; Li S; Yu H
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1307-1318. PubMed ID: 36695473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective.
    Gassert R; Dietz V
    J Neuroeng Rehabil; 2018 Jun; 15(1):46. PubMed ID: 29866106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications.
    Li N; Yang T; Yu P; Chang J; Zhao L; Zhao X; Elhajj IH; Xi N; Liu L
    Bioinspir Biomim; 2018 Aug; 13(6):066001. PubMed ID: 30088477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on a New Rehabilitation Robot for Balance Disorders.
    Wu J; Liu Y; Zhao J; Jia Z
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Real-Time Stability Control Method Through sEMG Interface for Lower Extremity Rehabilitation Exoskeletons.
    Wang C; Guo Z; Duan S; He B; Yuan Y; Wu X
    Front Neurosci; 2021; 15():645374. PubMed ID: 33927589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. User-centered design and development of TWIN-Acta: A novel control suite of the TWIN lower limb exoskeleton for the rehabilitation of persons post-stroke.
    Semprini M; Lencioni T; Hinterlang W; Vassallo C; Scarpetta S; Maludrottu S; Iandolo R; Carè M; Laffranchi M; Chiappalone M; Ferrarin M; De Michieli L; Jonsdottir J
    Front Neurosci; 2022; 16():915707. PubMed ID: 36507352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Path Planning and Impedance Control of a Soft Modular Exoskeleton for Coordinated Upper Limb Rehabilitation.
    Liu Q; Liu Y; Li Y; Zhu C; Meng W; Ai Q; Xie SQ
    Front Neurorobot; 2021; 15():745531. PubMed ID: 34790109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous motion and control of lower limb exoskeleton rehabilitation robot.
    Gao X; Zhang P; Peng X; Zhao J; Liu K; Miao M; Zhao P; Luo D; Li Y
    Front Bioeng Biotechnol; 2023; 11():1223831. PubMed ID: 37520296
    [No Abstract]   [Full Text] [Related]  

  • 19. Experimental Protocol to Assess Neuromuscular Plasticity Induced by an Exoskeleton Training Session.
    Di Marco R; Rubega M; Lennon O; Formaggio E; Sutaj N; Dazzi G; Venturin C; Bonini I; Ortner R; Cerrel Bazo HA; Tonin L; Tortora S; Masiero S; Del Felice A; On Behalf Of The Pro Gait Consortium
    Methods Protoc; 2021 Jul; 4(3):. PubMed ID: 34287357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted Therapy in Stroke Rehabilitation.
    Chang WH; Kim YH
    J Stroke; 2013 Sep; 15(3):174-81. PubMed ID: 24396811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.