These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 37466113)
1. A Mucin-Based Bio-Ink for 3D Printing of Objects with Anti-Biofouling Properties. Rickert CA; Mansi S; Fan D; Mela P; Lieleg O Macromol Biosci; 2023 Nov; 23(11):e2300198. PubMed ID: 37466113 [TBL] [Abstract][Full Text] [Related]
2. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related]
3. 3D Bioprinting with Visible Light Cross-Linkable Mucin-Hyaluronic Acid Composite Bioink for Lung Tissue Engineering. Sasikumar SC; Goswami U; Raichur AM ACS Appl Bio Mater; 2024 Aug; 7(8):5411-5422. PubMed ID: 38996006 [TBL] [Abstract][Full Text] [Related]
4. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905 [TBL] [Abstract][Full Text] [Related]
5. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications Suntornnond R; Ng WL; Huang X; Yeow CHE; Yeong WY J Mater Chem B; 2022 Aug; 10(31):5989-6000. PubMed ID: 35876487 [TBL] [Abstract][Full Text] [Related]
6. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
7. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications. Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157 [TBL] [Abstract][Full Text] [Related]
8. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713 [TBL] [Abstract][Full Text] [Related]
9. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System. Zhou Y; Yue Z; Chen Z; Wallace G Adv Healthc Mater; 2020 Dec; 9(24):e2001342. PubMed ID: 33103357 [TBL] [Abstract][Full Text] [Related]
10. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. Zhuang P; Ng WL; An J; Chua CK; Tan LP PLoS One; 2019; 14(6):e0216776. PubMed ID: 31188827 [TBL] [Abstract][Full Text] [Related]
11. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing. Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428 [TBL] [Abstract][Full Text] [Related]
12. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
13. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
14. On the progress of hydrogel-based 3D printing: Correlating rheological properties with printing behaviour. Bom S; Ribeiro R; Ribeiro HM; Santos C; Marto J Int J Pharm; 2022 Mar; 615():121506. PubMed ID: 35085727 [TBL] [Abstract][Full Text] [Related]
15. High resolution and fidelity 3D printing of Laponite and alginate ink hydrogels for tunable biomedical applications. Munoz-Perez E; Perez-Valle A; Igartua M; Santos-Vizcaino E; Hernandez RM Biomater Adv; 2023 Jun; 149():213414. PubMed ID: 37031611 [TBL] [Abstract][Full Text] [Related]
16. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering. You F; Eames BF; Chen X Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28737701 [TBL] [Abstract][Full Text] [Related]
17. Photo-crosslinkable methacrylated konjac glucomannan (KGMMA) hydrogels as a promising bioink for 3D bioprinting. Qin Z; Pang Y; Lu C; Yang Y; Gao M; Zheng L; Zhao J Biomater Sci; 2022 Nov; 10(22):6549-6557. PubMed ID: 36205771 [TBL] [Abstract][Full Text] [Related]
18. Development of a hydrocolloid bio-ink for 3D bioprinting. Yildirim Ö; Arslan-Yildiz A Biomater Sci; 2022 Nov; 10(23):6707-6717. PubMed ID: 36278818 [TBL] [Abstract][Full Text] [Related]
19. Bioinspired Processing: Complex Coacervates as Versatile Inks for 3D Bioprinting. Khoonkari M; Es Sayed J; Oggioni M; Amirsadeghi A; Dijkstra P; Parisi D; Kruyt F; van Rijn P; Włodarczyk-Biegun MK; Kamperman M Adv Mater; 2023 Jul; 35(28):e2210769. PubMed ID: 36916861 [TBL] [Abstract][Full Text] [Related]
20. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Kumar A; I Matari IA; Han SS Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]