These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 37466156)
1. URNet: System for recommending referrals for community screening of diabetic retinopathy based on deep learning. Yang K; Lu Y; Xue L; Yang Y; Chang S; Zhou C Exp Biol Med (Maywood); 2023 Jun; 248(11):909-921. PubMed ID: 37466156 [TBL] [Abstract][Full Text] [Related]
2. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading. Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290 [TBL] [Abstract][Full Text] [Related]
3. UC-stack: a deep learning computer automatic detection system for diabetic retinopathy classification. Fu Y; Wei Y; Chen S; Chen C; Zhou R; Li H; Qiu M; Xie J; Huang D Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38271723 [No Abstract] [Full Text] [Related]
4. A Multi-Label Deep Learning Model with Interpretable Grad-CAM for Diabetic Retinopathy Classification. Jiang H; Xu J; Shi R; Yang K; Zhang D; Gao M; Ma H; Qian W Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1560-1563. PubMed ID: 33018290 [TBL] [Abstract][Full Text] [Related]
5. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning. Alyoubi WL; Abulkhair MF; Shalash WM Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073541 [TBL] [Abstract][Full Text] [Related]
6. Development of revised ResNet-50 for diabetic retinopathy detection. Lin CL; Wu KC BMC Bioinformatics; 2023 Apr; 24(1):157. PubMed ID: 37076790 [TBL] [Abstract][Full Text] [Related]
7. Systematic Comparison of Heatmapping Techniques in Deep Learning in the Context of Diabetic Retinopathy Lesion Detection. Van Craenendonck T; Elen B; Gerrits N; De Boever P Transl Vis Sci Technol; 2020 Dec; 9(2):64. PubMed ID: 33403156 [TBL] [Abstract][Full Text] [Related]
8. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy. S K S; P A J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453 [TBL] [Abstract][Full Text] [Related]
9. Optical imaging for diabetic retinopathy diagnosis and detection using ensemble models. Pavithra S; Jaladi D; Tamilarasi K Photodiagnosis Photodyn Ther; 2024 Aug; 48():104259. PubMed ID: 38944405 [TBL] [Abstract][Full Text] [Related]
10. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images. Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335 [TBL] [Abstract][Full Text] [Related]
11. Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy. Tseng VS; Chen CL; Liang CM; Tai MC; Liu JT; Wu PY; Deng MS; Lee YW; Huang TY; Chen YH Transl Vis Sci Technol; 2020 Jul; 9(2):41. PubMed ID: 32855845 [TBL] [Abstract][Full Text] [Related]
12. Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. Ruamviboonsuk P; Tiwari R; Sayres R; Nganthavee V; Hemarat K; Kongprayoon A; Raman R; Levinstein B; Liu Y; Schaekermann M; Lee R; Virmani S; Widner K; Chambers J; Hersch F; Peng L; Webster DR Lancet Digit Health; 2022 Apr; 4(4):e235-e244. PubMed ID: 35272972 [TBL] [Abstract][Full Text] [Related]
13. Deep learning for diabetic retinopathy detection and classification based on fundus images: A review. Tsiknakis N; Theodoropoulos D; Manikis G; Ktistakis E; Boutsora O; Berto A; Scarpa F; Scarpa A; Fotiadis DI; Marias K Comput Biol Med; 2021 Aug; 135():104599. PubMed ID: 34247130 [TBL] [Abstract][Full Text] [Related]
14. Deep learning-based hemorrhage detection for diabetic retinopathy screening. Aziz T; Charoenlarpnopparut C; Mahapakulchai S Sci Rep; 2023 Jan; 13(1):1479. PubMed ID: 36707608 [TBL] [Abstract][Full Text] [Related]
15. Automated detection of diabetic retinopathy using custom convolutional neural network. Albahli S; Ahmad Hassan Yar GN J Xray Sci Technol; 2022; 30(2):275-291. PubMed ID: 35001904 [TBL] [Abstract][Full Text] [Related]
16. Improved Automatic Grading of Diabetic Retinopathy Using Deep Learning and Principal Component Analysis. Mohamed E; Elmohsen MA; Basha T Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3898-3901. PubMed ID: 34892084 [TBL] [Abstract][Full Text] [Related]
17. Effective methods of diabetic retinopathy detection based on deep convolutional neural networks. Gu Y; Wang X; Pan J; Yong Z; Guo S; Pan T; Jiao Y; Zhou Z Int J Comput Assist Radiol Surg; 2021 Dec; 16(12):2177-2187. PubMed ID: 34606059 [TBL] [Abstract][Full Text] [Related]
18. An Interpretable Ensemble Deep Learning Model for Diabetic Retinopathy Disease Classification. Jiang H; Yang K; Gao M; Zhang D; Ma H; Qian W Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2045-2048. PubMed ID: 31946303 [TBL] [Abstract][Full Text] [Related]
19. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image. Xu K; Feng D; Mi H Molecules; 2017 Nov; 22(12):. PubMed ID: 29168750 [TBL] [Abstract][Full Text] [Related]
20. Deep long and short term memory based Red Fox optimization algorithm for diabetic retinopathy detection and classification. Pugal Priya R; Saradadevi Sivarani T; Gnana Saravanan A Int J Numer Method Biomed Eng; 2022 Mar; 38(3):e3560. PubMed ID: 34865312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]