These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 37466156)
21. A new ultra-wide-field fundus dataset to diabetic retinopathy grading using hybrid preprocessing methods. Liu H; Teng L; Fan L; Sun Y; Li H Comput Biol Med; 2023 May; 157():106750. PubMed ID: 36931202 [TBL] [Abstract][Full Text] [Related]
22. Automatic severity grade classification of diabetic retinopathy using deformable ladder Bi attention U-net and deep adaptive CNN. Durai DBJ; Jaya T Med Biol Eng Comput; 2023 Aug; 61(8):2091-2113. PubMed ID: 37338737 [TBL] [Abstract][Full Text] [Related]
23. Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading. Sahlsten J; Jaskari J; Kivinen J; Turunen L; Jaanio E; Hietala K; Kaski K Sci Rep; 2019 Jul; 9(1):10750. PubMed ID: 31341220 [TBL] [Abstract][Full Text] [Related]
24. Detection of retinopathy disease using morphological gradient and segmentation approaches in fundus images. Toğaçar M Comput Methods Programs Biomed; 2022 Feb; 214():106579. PubMed ID: 34896689 [TBL] [Abstract][Full Text] [Related]
25. Various models for diabetic retinopathy screening that can be applied to India. Rajalakshmi R; Prathiba V; Rani PK; Mohan V Indian J Ophthalmol; 2021 Nov; 69(11):2951-2958. PubMed ID: 34708729 [TBL] [Abstract][Full Text] [Related]
27. Detecting Anomalies in Retinal Diseases Using Generative, Discriminative, and Self-supervised Deep Learning. Burlina P; Paul W; Liu TYA; Bressler NM JAMA Ophthalmol; 2022 Feb; 140(2):185-189. PubMed ID: 34967890 [TBL] [Abstract][Full Text] [Related]
28. A deep learning system for detecting diabetic retinopathy across the disease spectrum. Dai L; Wu L; Li H; Cai C; Wu Q; Kong H; Liu R; Wang X; Hou X; Liu Y; Long X; Wen Y; Lu L; Shen Y; Chen Y; Shen D; Yang X; Zou H; Sheng B; Jia W Nat Commun; 2021 May; 12(1):3242. PubMed ID: 34050158 [TBL] [Abstract][Full Text] [Related]
29. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening. Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737 [TBL] [Abstract][Full Text] [Related]
30. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976 [TBL] [Abstract][Full Text] [Related]
31. Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images. Oh K; Kang HM; Leem D; Lee H; Seo KY; Yoon S Sci Rep; 2021 Jan; 11(1):1897. PubMed ID: 33479406 [TBL] [Abstract][Full Text] [Related]
32. Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning. Pan X; Jin K; Cao J; Liu Z; Wu J; You K; Lu Y; Xu Y; Su Z; Jiang J; Yao K; Ye J Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):779-785. PubMed ID: 31932886 [TBL] [Abstract][Full Text] [Related]
33. Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network. Liu YP; Li Z; Xu C; Li J; Liang R Artif Intell Med; 2019 Aug; 99():101694. PubMed ID: 31606108 [TBL] [Abstract][Full Text] [Related]
34. A novel approach for intelligent diagnosis and grading of diabetic retinopathy. Hai Z; Zou B; Xiao X; Peng Q; Yan J; Zhang W; Yue K Comput Biol Med; 2024 Apr; 172():108246. PubMed ID: 38471350 [TBL] [Abstract][Full Text] [Related]
35. A Deep Learning Framework for Earlier Prediction of Diabetic Retinopathy from Fundus Photographs. Gunasekaran K; Pitchai R; Chaitanya GK; Selvaraj D; Annie Sheryl S; Almoallim HS; Alharbi SA; Raghavan SS; Tesemma BG Biomed Res Int; 2022; 2022():3163496. PubMed ID: 35711528 [TBL] [Abstract][Full Text] [Related]
36. Category weighted network and relation weighted label for diabetic retinopathy screening. Han Z; Yang B; Deng S; Li Z; Tong Z Comput Biol Med; 2023 Jan; 152():106408. PubMed ID: 36516580 [TBL] [Abstract][Full Text] [Related]
37. Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography. Heisler M; Karst S; Lo J; Mammo Z; Yu T; Warner S; Maberley D; Beg MF; Navajas EV; Sarunic MV Transl Vis Sci Technol; 2020 Apr; 9(2):20. PubMed ID: 32818081 [TBL] [Abstract][Full Text] [Related]
38. Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques. Farooq MS; Arooj A; Alroobaea R; Baqasah AM; Jabarulla MY; Singh D; Sardar R Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270949 [TBL] [Abstract][Full Text] [Related]
39. Deep learning-based analysis of infrared fundus photography for automated diagnosis of diabetic retinopathy with cataracts. Xue W; Zhang J; Ma Y; Hou J; Xiao F; Feng R; Zhao R; Zou H J Cataract Refract Surg; 2023 Oct; 49(10):1043-1048. PubMed ID: 37488748 [TBL] [Abstract][Full Text] [Related]
40. Deep Learning Approach for Automatic Microaneurysms Detection. Mateen M; Malik TS; Hayat S; Hameed M; Sun S; Wen J Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062506 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]