These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37466191)

  • 1. Editorial Comment: Implementing Deep Learning to Extrapolate Hepatic Proton Density Fat Fraction From T1-Weighted In-Phase and Opposed-Phase MRI.
    Arkoudis NA
    AJR Am J Roentgenol; 2023 Nov; 221(5):632. PubMed ID: 37466191
    [No Abstract]   [Full Text] [Related]  

  • 2. Deep Learning for Inference of Hepatic Proton Density Fat Fraction From T1-Weighted In-Phase and Opposed-Phase MRI: Retrospective Analysis of Population-Based Trial Data.
    Wang K; Cunha GM; Hasenstab K; Henderson WC; Middleton MS; Cole SA; Umans JG; Ali T; Hsiao A; Sirlin CB
    AJR Am J Roentgenol; 2023 Nov; 221(5):620-631. PubMed ID: 37466189
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of hepatic steatosis on liver volume determined by proton density fat fraction and deep learning-measured liver volume.
    Choi JY; Lee SS; Kim NY; Park HJ; Sung YS; Lee Y; Yoon JS; Suk HI
    Eur Radiol; 2023 Sep; 33(9):5924-5932. PubMed ID: 37012546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal imaging-based material mass density estimation for proton therapy using supervised deep learning.
    Chang CW; Marants R; Gao Y; Goette M; Scholey JE; Bradley JD; Liu T; Zhou J; Sudhyadhom A; Yang X
    Br J Radiol; 2023 Dec; 96(1152):20220907. PubMed ID: 37660372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty-aware physics-driven deep learning network for free-breathing liver fat and R
    Shih SF; Kafali SG; Calkins KL; Wu HH
    Magn Reson Med; 2023 Apr; 89(4):1567-1585. PubMed ID: 36426730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Analysis of Common Factors Impacting Deep Learning Model Generalizability in Liver Segmentation.
    Konkel B; Macdonald J; Lafata K; Zaki IH; Bozdogan E; Chaudhry M; Wang Y; Janas G; Wiggins WF; Bashir MR
    Radiol Artif Intell; 2023 May; 5(3):e220080. PubMed ID: 37293348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Editorial for "A Dual-Channel Deep Learning Approach for Lung Cavity Estimation From Hyperpolarized Gas and Proton MRI".
    Munidasa S; Santyr G
    J Magn Reson Imaging; 2023 Jun; 57(6):1891-1892. PubMed ID: 36342079
    [No Abstract]   [Full Text] [Related]  

  • 8. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study.
    Jayachandran Preetha C; Meredig H; Brugnara G; Mahmutoglu MA; Foltyn M; Isensee F; Kessler T; Pflüger I; Schell M; Neuberger U; Petersen J; Wick A; Heiland S; Debus J; Platten M; Idbaih A; Brandes AA; Winkler F; van den Bent MJ; Nabors B; Stupp R; Maier-Hein KH; Gorlia T; Tonn JC; Weller M; Wick W; Bendszus M; Vollmuth P
    Lancet Digit Health; 2021 Dec; 3(12):e784-e794. PubMed ID: 34688602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning to Simulate Contrast-enhanced Breast MRI of Invasive Breast Cancer.
    Chung M; Calabrese E; Mongan J; Ray KM; Hayward JH; Kelil T; Sieberg R; Hylton N; Joe BN; Lee AY
    Radiology; 2023 Mar; 306(3):e213199. PubMed ID: 36378030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity.
    Almansour H; Herrmann J; Gassenmaier S; Lingg A; Nickel MD; Kannengiesser S; Arberet S; Othman AE; Afat S
    Acad Radiol; 2023 May; 30(5):863-872. PubMed ID: 35810067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Editorial for "Implementable Deep Learning for Multi-sequence Proton MRI Lung Segmentation: A Multi-center, Multi-vendor and Multi-disease Study".
    Hadj Bouzid AI; Dournes G
    J Magn Reson Imaging; 2023 Oct; 58(4):1045-1046. PubMed ID: 36847749
    [No Abstract]   [Full Text] [Related]  

  • 12. Quantification of hepatic steatosis with a multistep adaptive fitting MRI approach: prospective validation against MR spectroscopy.
    Bashir MR; Zhong X; Nickel MD; Fananapazir G; Kannengiesser SA; Kiefer B; Dale BM
    AJR Am J Roentgenol; 2015 Feb; 204(2):297-306. PubMed ID: 25615751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cutoff Values for Diagnosing Hepatic Steatosis Using Contemporary MRI-Proton Density Fat Fraction Measuring Methods.
    Park S; Kwon JH; Kim SY; Kang JH; Chung JI; Jang JK; Jang HY; Shim JH; Lee SS; Kim KW; Song GW
    Korean J Radiol; 2022 Dec; 23(12):1260-1268. PubMed ID: 36447414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model.
    Conte GM; Weston AD; Vogelsang DC; Philbrick KA; Cai JC; Barbera M; Sanvito F; Lachance DH; Jenkins RB; Tobin WO; Eckel-Passow JE; Erickson BJ
    Radiology; 2021 May; 299(2):313-323. PubMed ID: 33687284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three segments sampling strategy for the assessment of liver steatosis using magnetic resonance imaging proton density fat fraction.
    Kim A; Kim M; Lee CM; Kang BK; Jun DW
    Eur J Radiol; 2023 Feb; 159():110653. PubMed ID: 36563563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint MRI T1 Unenhancing and Contrast-enhancing Multiple Sclerosis Lesion Segmentation with Deep Learning in OPERA Trials.
    Krishnan AP; Song Z; Clayton D; Gaetano L; Jia X; de Crespigny A; Bengtsson T; Carano RAD
    Radiology; 2022 Mar; 302(3):662-673. PubMed ID: 34904871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence.
    Shanbhogue K; Tong A; Smereka P; Nickel D; Arberet S; Anthopolos R; Chandarana H
    Eur Radiol; 2021 Nov; 31(11):8447-8457. PubMed ID: 33961086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a deep learning algorithm for three-dimensional T1-weighted gradient-echo imaging of gadoxetic acid-enhanced MRI in patients at a high risk of hepatocellular carcinoma.
    Kim JH; Yoon JH; Kim SW; Park J; Bae SH; Lee JM
    Abdom Radiol (NY); 2024 Mar; 49(3):738-747. PubMed ID: 38095685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of deep learning synthesis of synthetic CTs using clinical MRI inputs.
    Massa HA; Johnson JM; McMillan AB
    Phys Med Biol; 2020 Dec; 65(23):23NT03. PubMed ID: 33120371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatic R2* is more strongly associated with proton density fat fraction than histologic liver iron scores in patients with nonalcoholic fatty liver disease.
    Bashir MR; Wolfson T; Gamst AC; Fowler KJ; Ohliger M; Shah SN; Alazraki A; Trout AT; Behling C; Allende DS; Loomba R; Sanyal A; Schwimmer J; Lavine JE; Shen W; Tonascia J; Van Natta ML; Mamidipalli A; Hooker J; Kowdley KV; Middleton MS; Sirlin CB;
    J Magn Reson Imaging; 2019 May; 49(5):1456-1466. PubMed ID: 30318834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.