BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 37466411)

  • 1. K
    Rahman MA; Orfali R; Dave N; Lam E; Naguib N; Nam YW; Zhang M
    J Neurosci Res; 2023 Nov; 101(11):1699-1710. PubMed ID: 37466411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function.
    Edgerton JR; Reinhart PH
    J Physiol; 2003 Apr; 548(Pt 1):53-69. PubMed ID: 12576503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro.
    Hallworth NE; Wilson CJ; Bevan MD
    J Neurosci; 2003 Aug; 23(20):7525-42. PubMed ID: 12930791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata.
    Benton MD; Lewis AH; Bant JS; Raman IM
    J Neurophysiol; 2013 May; 109(10):2528-41. PubMed ID: 23446695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased calcium-dependent K+ channel activity contributes to the maturation of cellular firing patterns in developing cerebellar Purkinje neurons.
    Muller YL; Yool AJ
    Brain Res Dev Brain Res; 1998 Jun; 108(1-2):193-203. PubMed ID: 9693796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variants in the SK2 channel gene (KCNN2) lead to dominant neurodevelopmental movement disorders.
    Mochel F; Rastetter A; Ceulemans B; Platzer K; Yang S; Shinde DN; Helbig KL; Lopergolo D; Mari F; Renieri A; Benetti E; Canitano R; Waisfisz Q; Plomp AS; Huisman SA; Wilson GN; Cathey SS; Louie RJ; Gaudio DD; Waggoner D; Kacker S; Nugent KM; Roeder ER; Bruel AL; Thevenon J; Ehmke N; Horn D; Holtgrewe M; Kaiser FJ; Kamphausen SB; Abou Jamra R; Weckhuysen S; Dalle C; Depienne C
    Brain; 2020 Dec; 143(12):3564-3573. PubMed ID: 33242881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells.
    Gu N; Vervaeke K; Hu H; Storm JF
    J Physiol; 2005 Aug; 566(Pt 3):689-715. PubMed ID: 15890705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HDAC2-dependent remodeling of K
    Rahm AK; Wieder T; Gramlich D; Müller ME; Wunsch MN; El Tahry FA; Heimberger T; Weis T; Most P; Katus HA; Thomas D; Lugenbiel P
    Life Sci; 2021 Feb; 266():118892. PubMed ID: 33310041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental regulation of small-conductance Ca2+-activated K+ channel expression and function in rat Purkinje neurons.
    Cingolani LA; Gymnopoulos M; Boccaccio A; Stocker M; Pedarzani P
    J Neurosci; 2002 Jun; 22(11):4456-67. PubMed ID: 12040053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SK2 channel expression and function in cerebellar Purkinje cells.
    Hosy E; Piochon C; Teuling E; Rinaldo L; Hansel C
    J Physiol; 2011 Jul; 589(Pt 14):3433-40. PubMed ID: 21521760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron.
    Zhang Y; Huang H
    J Neurosci; 2017 Nov; 37(44):10738-10747. PubMed ID: 28982705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability.
    Dell'Orco JM; Wasserman AH; Chopra R; Ingram MA; Hu YS; Singh V; Wulff H; Opal P; Orr HT; Shakkottai VG
    J Neurosci; 2015 Aug; 35(32):11292-307. PubMed ID: 26269637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trigger-Specific Remodeling of K
    Rahm AK; Gramlich D; Wieder T; Müller ME; Schoeffel A; El Tahry FA; Most P; Heimberger T; Sandke S; Weis T; Ullrich ND; Korff T; Lugenbiel P; Katus HA; Thomas D
    Pharmgenomics Pers Med; 2021; 14():579-590. PubMed ID: 34045886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological Roles and Therapeutic Potential of Ca
    Kshatri AS; Gonzalez-Hernandez A; Giraldez T
    Front Mol Neurosci; 2018; 11():258. PubMed ID: 30104956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca(2+)-dependent K+ channels of high conductance in smooth muscle cells isolated from rat cerebral arteries.
    Wang Y; Mathers DA
    J Physiol; 1993 Mar; 462():529-45. PubMed ID: 8331591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Channelopathy of small- and intermediate-conductance Ca
    Nam YW; Downey M; Rahman MA; Cui M; Zhang M
    Acta Pharmacol Sin; 2023 Feb; 44(2):259-267. PubMed ID: 35715699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Ca2+-dependent K+ channel expression in rat cerebellum during postnatal development.
    Muller YL; Reitstetter R; Yool AJ
    J Neurosci; 1998 Jan; 18(1):16-25. PubMed ID: 9412482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact.
    Gu N; Hu H; Vervaeke K; Storm JF
    J Neurophysiol; 2008 Nov; 100(5):2589-604. PubMed ID: 18684909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two Distinct Sets of Ca
    Ait Ouares K; Filipis L; Tzilivaki A; Poirazi P; Canepari M
    J Neurosci; 2019 Mar; 39(11):1969-1981. PubMed ID: 30630881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of Novel Activators of Large-Conductance Calcium-Activated Potassium Channels for the Treatment of Cerebellar Ataxia.
    Srinivasan SR; Huang H; Chang WC; Nasburg JA; Nguyen HM; Strassmaier T; Wulff H; Shakkottai VG
    Mol Pharmacol; 2022 Jul; 102(1):438-449. PubMed ID: 35489717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.