These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37466639)
1. Controlling the Interlayer Dzyaloshinskii-Moriya Interaction by Electrical Currents. Kammerbauer F; Choi WY; Freimuth F; Lee K; Frömter R; Han DS; Lavrijsen R; Swagten HJM; Mokrousov Y; Kläui M Nano Lett; 2023 Aug; 23(15):7070-7075. PubMed ID: 37466639 [TBL] [Abstract][Full Text] [Related]
2. Field-Free Spin-Orbit Torque Switching Enabled by the Interlayer Dzyaloshinskii-Moriya Interaction. He W; Wan C; Zheng C; Wang Y; Wang X; Ma T; Wang Y; Guo C; Luo X; Stebliy ME; Yu G; Liu Y; Ognev AV; Samardak AS; Han X Nano Lett; 2022 Sep; 22(17):6857-6865. PubMed ID: 35849087 [TBL] [Abstract][Full Text] [Related]
3. Tailoring Interlayer Chiral Exchange by Azimuthal Symmetry Engineering. Huang YH; Han JH; Liao WB; Hu CY; Liu YT; Pai CF Nano Lett; 2024 Jan; 24(2):649-656. PubMed ID: 38165119 [TBL] [Abstract][Full Text] [Related]
4. Asymmetric magnetization switching and programmable complete Boolean logic enabled by long-range intralayer Dzyaloshinskii-Moriya interaction. Liu Q; Liu L; Xing G; Zhu L Nat Commun; 2024 Apr; 15(1):2978. PubMed ID: 38582790 [TBL] [Abstract][Full Text] [Related]
5. Chiral Symmetry Breaking for Deterministic Switching of Perpendicular Magnetization by Spin-Orbit Torque. Wu H; Nance J; Razavi SA; Lujan D; Dai B; Liu Y; He H; Cui B; Wu D; Wong K; Sobotkiewich K; Li X; Carman GP; Wang KL Nano Lett; 2021 Jan; 21(1):515-521. PubMed ID: 33338380 [TBL] [Abstract][Full Text] [Related]
7. Ruderman-Kittel-Kasuya-Yosida-Type Interlayer Dzyaloshinskii-Moriya Interaction in Synthetic Magnets. Liang S; Chen R; Cui Q; Zhou Y; Pan F; Yang H; Song C Nano Lett; 2023 Sep; 23(18):8690-8696. PubMed ID: 37695701 [TBL] [Abstract][Full Text] [Related]
8. Asymmetric Hysteresis for Probing Dzyaloshinskii-Moriya Interaction. Han DS; Kim NH; Kim JS; Yin Y; Koo JW; Cho J; Lee S; Kläui M; Swagten HJ; Koopmans B; You CY Nano Lett; 2016 Jul; 16(7):4438-46. PubMed ID: 27348607 [TBL] [Abstract][Full Text] [Related]
9. Gradient-Induced Dzyaloshinskii-Moriya Interaction. Liang J; Chshiev M; Fert A; Yang H Nano Lett; 2022 Dec; 22(24):10128-10133. PubMed ID: 36520645 [TBL] [Abstract][Full Text] [Related]
10. Hole doping induced ferromagnetism and Dzyaloshinskii-Moriya interaction in the two-dimensional group-IVA oxides. Li P; Ga Y; Cui Q; Liang J; Yu D; Yang H J Phys Condens Matter; 2023 Mar; 35(20):. PubMed ID: 36867875 [TBL] [Abstract][Full Text] [Related]
11. Magnon Hall effect without Dzyaloshinskii-Moriya interaction. Owerre SA J Phys Condens Matter; 2017 Jan; 29(3):03LT01. PubMed ID: 27845921 [TBL] [Abstract][Full Text] [Related]
12. Field-Free Switching of Perpendicular Magnetization in an Ultrathin Epitaxial Magnetic Insulator. Husain S; Prestes NF; Fayet O; Collin S; Godel F; Jacquet E; Denneulin T; Dunin-Borkowski RE; Thiaville A; Bibes M; Jaffrès H; Reyren N; Fert A; George JM Nano Lett; 2024 Mar; 24(9):2743-2750. PubMed ID: 38393986 [TBL] [Abstract][Full Text] [Related]