These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37466752)

  • 1. Arginase from Priestia megaterium and the Effects of CMCS Conjugation on Its Enzymological Properties.
    Jiao YL; Shen PQ; Wang SF; Chen J; Zhou XH; Ma GZ
    Curr Microbiol; 2023 Jul; 80(9):292. PubMed ID: 37466752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a novel marine microbial uricase from
    Jiao Y; Zhu Y; Zeng S; Wang S; Chen J; Zhou X; Ma G
    Prep Biochem Biotechnol; 2023; 53(7):816-826. PubMed ID: 36398928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-coacervation of carboxymethyl chitosan as a pH-responsive encapsulation and delivery strategy.
    Jing H; Du X; Mo L; Wang H
    Int J Biol Macromol; 2021 Dec; 192():1169-1177. PubMed ID: 34678379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simply constructed chitosan nanocarriers with precise spatiotemporal control for efficient intracellular drug delivery.
    Kong M; Zuo Y; Wang M; Bai X; Feng C; Chen X
    Carbohydr Polym; 2017 Aug; 169():341-350. PubMed ID: 28504154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marine collagen peptide grafted carboxymethyl chitosan: Optimization preparation and coagulation evaluation.
    Cheng Y; Lu S; Hu Z; Zhang B; Li S; Hong P
    Int J Biol Macromol; 2020 Dec; 164():3953-3964. PubMed ID: 32898540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermostable arginase from Sulfobacillus acidophilus with neutral pH optimum applied for high-efficiency L-ornithine production.
    Huang K; Zhang S; Guan X; Liu J; Li S; Song H
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6635-6646. PubMed ID: 32529376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of N-terminal nonessential domains on the enzymological properties of the pullulanase from a marine Bacillus megaterium.
    Jiao Y; Wu Y; Chen H; Wang S; Chen L; Lv M; Fang Y; Liu S
    Biotechnol Lett; 2019 Jul; 41(6-7):849-857. PubMed ID: 31065856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery.
    Yao Y; Su Z; Liang Y; Zhang N
    Int J Nanomedicine; 2015; 10():6185-97. PubMed ID: 26491291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels.
    He G; Chen X; Yin Y; Cai W; Ke W; Kong Y; Zheng H
    J Biomater Sci Polym Ed; 2016; 27(4):370-84. PubMed ID: 26675323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxymethyl chitosan coated alpha-linolenic acid nanoliposomes: Preparation, stability and release in vitro and in vivo.
    Yang C; Gong L; Li X; Li W; Meng X; Liu B
    Food Chem; 2023 Mar; 404(Pt A):134526. PubMed ID: 36265276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression, purification, and biochemical properties of arginase from Bacillus subtilis 168.
    Yu JJ; Park KB; Kim SG; Oh SH
    J Microbiol; 2013 Apr; 51(2):222-8. PubMed ID: 23625224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization, characterization, and laboratory-scale application of bovine liver arginase.
    Dala E; Szajáni B
    Appl Biochem Biotechnol; 1994 Dec; 49(3):203-15. PubMed ID: 7847897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility and in vivo degradation of chitosan based hydrogels as potential drug carrier.
    Su F; Wang Y; Liu X; Shen X; Zhang X; Xing Q; Wang L; Chen Y
    J Biomater Sci Polym Ed; 2018 Sep; 29(13):1515-1528. PubMed ID: 29745306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Physico-chemical properties of guinea pig liver arginase (author's transl)].
    Soler G; Mataix FJ; Ruiz-Amil M
    Rev Esp Fisiol; 1981 Mar; 37(1):37-44. PubMed ID: 7244325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic investigation of fabrication conditions of nanocarrier based on carboxymethyl chitosan for sustained release of insulin.
    Bai X; Kong M; Xia G; Bi S; Zhou Z; Feng C; Cheng X; Chen X
    Int J Biol Macromol; 2017 Sep; 102():468-474. PubMed ID: 28366858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of carboxymethyl chitosan on physicochemical, rheological properties and in vitro digestibility of yam starch.
    Ji X; Luo Y; Shen M; Yang J; Han X; Xie J
    Int J Biol Macromol; 2021 Dec; 192():537-545. PubMed ID: 34655578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing.
    Sun T; Zhan B; Zhang W; Qin D; Xia G; Zhang H; Peng M; Li SA; Zhang Y; Gao Y; Lee WH
    Int J Nanomedicine; 2018; 13():5771-5786. PubMed ID: 30310280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive electrospinning of composite nanofibers of carboxymethyl chitosan cross-linked by alginate dialdehyde with the aid of polyethylene oxide.
    Zhao X; Chen S; Lin Z; Du C
    Carbohydr Polym; 2016 Sep; 148():98-106. PubMed ID: 27185120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eco-friendly O-carboxymethyl chitosan base chlorfenapyr nanopesticide for effective pest control and reduced toxicity to honey bees.
    Hou R; Li C; Tan Y; Wang Y; Huang S; Zhao C; Zhang Z
    Int J Biol Macromol; 2023 Jan; 224():972-983. PubMed ID: 36302478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring stimuli-responsive delivery system driven by metal-ligand coordination bonding.
    Liang H; Zhou B; He Y; Pei Y; Li B; Li J
    Int J Nanomedicine; 2017; 12():3315-3330. PubMed ID: 28490873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.