BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 37466780)

  • 1. Cost-effective protocol to produce 3D-printed electrochemical devices using a 3D pen and lab-made filaments to ciprofloxacin sensing.
    Lisboa TP; de Faria LV; de Oliveira WBV; Oliveira RS; Matos MAC; Dornellas RM; Matos RC
    Mikrochim Acta; 2023 Jul; 190(8):310. PubMed ID: 37466780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed graphite-based electrode coupled with batch injection analysis: An affordable high-throughput strategy for atorvastatin determination.
    de Faria LV; do Nascimento SFL; Villafuerte LM; Semaan FS; Pacheco WF; Dornellas RM
    Talanta; 2023 Dec; 265():124873. PubMed ID: 37390670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous monitoring of amoxicillin and paracetamol in synthetic biological fluids using a 3D printed disposable electrode with a lab-made conductive filament.
    Lisboa TP; de Faria LV; de Oliveira WBV; Oliveira RS; de Souza CC; Matos MAC; Dornellas RM; Matos RC
    Anal Bioanal Chem; 2024 Jan; 416(1):215-226. PubMed ID: 37923939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed electrodes using graphite/carbon nitride/polylactic acid composite material: A greener platform for detection of amaranth dye in food samples.
    de Faria LV; Villafuerte LM; do Nascimento SFL; de Sá IC; Peixoto DA; Ribeiro RSA; Nossol E; Lima TM; Semaan FS; Pacheco WF; Dornellas RM
    Food Chem; 2024 Jun; 442():138497. PubMed ID: 38271904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lab-made 3D-printed electrochemical sensors for tetracycline determination.
    Lopes CEC; de Faria LV; Araújo DAG; Richter EM; Paixão TRLC; Dantas LMF; Muñoz RAA; da Silva IS
    Talanta; 2023 Jul; 259():124536. PubMed ID: 37062090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel 3D-printed graphite/polylactic acid sensor for the electrochemical determination of 2,4,6-trinitrotoluene residues in environmental waters.
    Siqueira GP; Araújo DAG; de Faria LV; Ramos DLO; Matias TA; Richter EM; Paixão TRLC; Muñoz RAA
    Chemosphere; 2023 Nov; 340():139796. PubMed ID: 37586488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printing pen versus desktop 3D-printers: Fabrication of carbon black/polylactic acid electrodes for single-drop detection of 2,4,6-trinitrotoluene.
    Cardoso RM; Rocha DP; Rocha RG; Stefano JS; Silva RAB; Richter EM; Muñoz RAA
    Anal Chim Acta; 2020 Oct; 1132():10-19. PubMed ID: 32980099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New conductive filament ready-to-use for 3D-printing electrochemical (bio)sensors: Towards the detection of SARS-CoV-2.
    Stefano JS; Guterres E Silva LR; Rocha RG; Brazaca LC; Richter EM; Abarza Muñoz RA; Janegitz BC
    Anal Chim Acta; 2022 Jan; 1191():339372. PubMed ID: 35033268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical determination of several biofuel antioxidants in biodiesel and biokerosene using polylactic acid loaded with carbon black within 3D-printed devices.
    Inoque NIG; João AF; de Faria LV; Muñoz RAA
    Mikrochim Acta; 2022 Jan; 189(2):57. PubMed ID: 35013813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel disposable and portable 3D-printed electrochemical apparatus for fast and selective screening of 25E-NBOH in forensic samples.
    de Faria LV; Macedo AA; Arantes LC; Matias TA; Ramos DLO; Richter EM; Dos Santos WTP; Muñoz RAA
    Talanta; 2024 Mar; 269():125476. PubMed ID: 38042144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of 3D-printed disposable electrochemical sensors for glucose detection using a conductive filament modified with nickel microparticles.
    Rocha RG; Cardoso RM; Zambiazi PJ; Castro SVF; Ferraz TVB; Aparecido GO; Bonacin JA; Munoz RAA; Richter EM
    Anal Chim Acta; 2020 Oct; 1132():1-9. PubMed ID: 32980098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed electrode an affordable sensor for sulfanilamide monitoring in breast milk, synthetic urine, and pharmaceutical formulation samples.
    Lisboa TP; Alves GF; de Faria LV; de Souza CC; Matos MAC; Matos RC
    Talanta; 2022 Sep; 247():123610. PubMed ID: 35649326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Biosensor for SARS-CoV-2 cDNA Detection Using AuPs-Modified 3D-Printed Graphene Electrodes.
    Silva LRG; Stefano JS; Orzari LO; Brazaca LC; Carrilho E; Marcolino-Junior LH; Bergamini MF; Munoz RAA; Janegitz BC
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New carbon black-based conductive filaments for the additive manufacture of improved electrochemical sensors by fused deposition modeling.
    Stefano JS; Silva LRGE; Janegitz BC
    Mikrochim Acta; 2022 Oct; 189(11):414. PubMed ID: 36217039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi sensor compatible 3D-printed electrochemical cell for voltammetric drug screening.
    Ferreira PA; de Oliveira FM; de Melo EI; de Carvalho AE; Lucca BG; Ferreira VS; da Silva RAB
    Anal Chim Acta; 2021 Jul; 1169():338568. PubMed ID: 34088376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printing for electroanalysis: From multiuse electrochemical cells to sensors.
    Cardoso RM; Mendonça DMH; Silva WP; Silva MNT; Nossol E; da Silva RAB; Richter EM; Muñoz RAA
    Anal Chim Acta; 2018 Nov; 1033():49-57. PubMed ID: 30172331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Determination of the Drug Colchicine in Pharmaceutical and Βiological Samples Using a 3D-Printed Device.
    Filopoulou M; Michail G; Katseli V; Economou A; Kokkinos C
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of activation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine.
    Kalinke C; Neumsteir NV; Aparecido GO; Ferraz TVB; Dos Santos PL; Janegitz BC; Bonacin JA
    Analyst; 2020 Feb; 145(4):1207-1218. PubMed ID: 31858099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed reduced graphene oxide/polylactic acid electrodes: A new prototyped platform for sensing and biosensing applications.
    Silva VAOP; Fernandes-Junior WS; Rocha DP; Stefano JS; Munoz RAA; Bonacin JA; Janegitz BC
    Biosens Bioelectron; 2020 Dec; 170():112684. PubMed ID: 33049481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the coating of 3D-printed insulating substrates with conductive composites: a simple, cheap and versatile strategy to prepare customized high-performance electrochemical sensors.
    de Oliveira FM; Mendonça MZM; de Moraes NC; Petroni JM; Neves MM; de Melo EI; Lucca BG; Bezerra da Silva RA
    Anal Methods; 2022 Sep; 14(34):3345-3354. PubMed ID: 35979860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.