These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 37466996)
1. Discovery and Characterization of a Myxobacterial Lanthipeptide with Unique Biosynthetic Features and Anti-inflammatory Activity. Wang X; Chen X; Wang ZJ; Zhuang M; Zhong L; Fu C; Garcia R; Müller R; Zhang Y; Yan J; Wu D; Huo L J Am Chem Soc; 2023 Aug; 145(30):16924-16937. PubMed ID: 37466996 [TBL] [Abstract][Full Text] [Related]
2. Genome Mining of Myxopeptins Reveals a Class of Lanthipeptide-Derived Linear Dehydroamino Acid-Containing Peptides from Wang H; Han Y; Wang X; Jia Y; Zhang Y; Müller R; Huo L ACS Chem Biol; 2023 Oct; 18(10):2163-2169. PubMed ID: 37703191 [TBL] [Abstract][Full Text] [Related]
3. Genome-Guided Discovery of the First Myxobacterial Biarylitide Myxarylin Reveals Distinct C-N Biaryl Crosslinking in RiPP Biosynthesis. Hug JJ; Frank NA; Walt C; Šenica P; Panter F; Müller R Molecules; 2021 Dec; 26(24):. PubMed ID: 34946566 [TBL] [Abstract][Full Text] [Related]
4. Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides. Liu WQ; Ji X; Ba F; Zhang Y; Xu H; Huang S; Zheng X; Liu Y; Ling S; Jewett MC; Li J Nat Commun; 2024 May; 15(1):4336. PubMed ID: 38773100 [TBL] [Abstract][Full Text] [Related]
5. Discovery and Characterization of a Class IV Lanthipeptide with a Nonoverlapping Ring Pattern. Ren H; Shi C; Bothwell IR; van der Donk WA; Zhao H ACS Chem Biol; 2020 Jun; 15(6):1642-1649. PubMed ID: 32356655 [TBL] [Abstract][Full Text] [Related]
6. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. Walker MC; Eslami SM; Hetrick KJ; Ackenhusen SE; Mitchell DA; van der Donk WA BMC Genomics; 2020 Jun; 21(1):387. PubMed ID: 32493223 [TBL] [Abstract][Full Text] [Related]
7. Mammalian Commensal He Y; Fan A; Han M; Li H; Li M; Fan H; An X; Song L; Zhu S; Tong Y Biochemistry; 2023 Jan; 62(2):462-475. PubMed ID: 36577516 [TBL] [Abstract][Full Text] [Related]
8. Zn-dependent bifunctional proteases are responsible for leader peptide processing of class III lanthipeptides. Chen S; Xu B; Chen E; Wang J; Lu J; Donadio S; Ge H; Wang H Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2533-2538. PubMed ID: 30679276 [TBL] [Abstract][Full Text] [Related]
9. Substrate Recognition by the Class II Lanthipeptide Synthetase HalM2. Rahman IR; Acedo JZ; Liu XR; Zhu L; Arrington J; Gross ML; van der Donk WA ACS Chem Biol; 2020 Jun; 15(6):1473-1486. PubMed ID: 32293871 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Repka LM; Chekan JR; Nair SK; van der Donk WA Chem Rev; 2017 Apr; 117(8):5457-5520. PubMed ID: 28135077 [TBL] [Abstract][Full Text] [Related]
11. A Lanthipeptide-like N-Terminal Leader Region Guides Peptide Epimerization by Radical SAM Epimerases: Implications for RiPP Evolution. Fuchs SW; Lackner G; Morinaka BI; Morishita Y; Asai T; Riniker S; Piel J Angew Chem Int Ed Engl; 2016 Sep; 55(40):12330-3. PubMed ID: 27584723 [TBL] [Abstract][Full Text] [Related]
12. Engineering lanthipeptides by introducing a large variety of RiPP modifications to obtain new-to-nature bioactive peptides. Fu Y; Xu Y; Ruijne F; Kuipers OP FEMS Microbiol Rev; 2023 May; 47(3):. PubMed ID: 37096385 [TBL] [Abstract][Full Text] [Related]
13. Discovery of the Lanthipeptide Curvocidin and Structural Insights into its Trifunctional Synthetase CuvL. Sigurdsson A; Martins BM; Düttmann SA; Jasyk M; Dimos-Röhl B; Schöpf F; Gemander M; Knittel CH; Schnegotzki R; Schmid B; Kosol S; Pommerening L; Gonzáles-Viegaz M; Seidel M; Hügelland M; Leimkühler S; Dobbek H; Mainz A; Süssmuth RD Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202302490. PubMed ID: 37014271 [TBL] [Abstract][Full Text] [Related]
15. Heterologous production of a new lanthipeptide boletupeptin using a cryptic biosynthetic gene cluster of the myxobacterium Melittangium boletus. Rukthanapitak P; Saito K; Kobayashi R; Kaweewan I; Kodani S J Biosci Bioeng; 2024 May; 137(5):354-359. PubMed ID: 38458885 [TBL] [Abstract][Full Text] [Related]
16. A scalable platform to discover antimicrobials of ribosomal origin. Ayikpoe RS; Shi C; Battiste AJ; Eslami SM; Ramesh S; Simon MA; Bothwell IR; Lee H; Rice AJ; Ren H; Tian Q; Harris LA; Sarksian R; Zhu L; Frerk AM; Precord TW; van der Donk WA; Mitchell DA; Zhao H Nat Commun; 2022 Oct; 13(1):6135. PubMed ID: 36253467 [TBL] [Abstract][Full Text] [Related]
17. Involvement and unusual substrate specificity of a prolyl oligopeptidase in class III lanthipeptide maturation. Völler GH; Krawczyk B; Ensle P; Süssmuth RD J Am Chem Soc; 2013 May; 135(20):7426-9. PubMed ID: 23651048 [TBL] [Abstract][Full Text] [Related]
18. Modular Use of the Uniquely Small Ring A of Mersacidin Generates the Smallest Ribosomally Produced Lanthipeptide. Viel JH; Kuipers OP ACS Synth Biol; 2022 Sep; 11(9):3078-3087. PubMed ID: 36065523 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic aspects of lanthipeptide leaders. Plat A; Kuipers A; Rink R; Moll GN Curr Protein Pept Sci; 2013 Mar; 14(2):85-96. PubMed ID: 23441895 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a Dehydratase and Methyltransferase in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides in Lachnospiraceae. Huo L; Zhao X; Acedo JZ; Estrada P; Nair SK; van der Donk WA Chembiochem; 2020 Jan; 21(1-2):190-199. PubMed ID: 31532570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]