These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37467155)
21. Predominant Effect of Material Surface Hydrophobicity on Gypsum Scale Formation. Huang X; Li C; Zuo K; Li Q Environ Sci Technol; 2020 Dec; 54(23):15395-15404. PubMed ID: 33064949 [TBL] [Abstract][Full Text] [Related]
22. Insight into the Photodegradation of Microplastics Boosted by Iron (Hydr)oxides. Ding L; Guo X; Du S; Cui F; Zhang Y; Liu P; Ouyang Z; Jia H; Zhu L Environ Sci Technol; 2022 Dec; 56(24):17785-17794. PubMed ID: 36472936 [TBL] [Abstract][Full Text] [Related]
23. Bubble nucleation and migration in a lead-iron hydr(oxide) core-shell nanoparticle. Niu K; Frolov T; Xin HL; Wang J; Asta M; Zheng H Proc Natl Acad Sci U S A; 2015 Oct; 112(42):12928-32. PubMed ID: 26438864 [TBL] [Abstract][Full Text] [Related]
24. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures. Nelson YM; Lion LW; Shuler ML; Ghiorse WC Environ Sci Technol; 2002 Feb; 36(3):421-5. PubMed ID: 11871557 [TBL] [Abstract][Full Text] [Related]
25. Quantum chemical calculations of sulfate adsorption at the Al- and Fe-(hydr)oxide-H20 interface-estimation of gibbs free energies. Paul KW; Kubick JD; Sparks DL Environ Sci Technol; 2006 Dec; 40(24):7717-24. PubMed ID: 17256518 [TBL] [Abstract][Full Text] [Related]
26. Amorphous iron-(hydr) oxide networks at liquid/vapor interfaces: in situ X-ray scattering and spectroscopy studies. Wang W; Pleasants J; Bu W; Park RY; Kuzmenko I; Vaknin D J Colloid Interface Sci; 2012 Oct; 384(1):45-54. PubMed ID: 22818795 [TBL] [Abstract][Full Text] [Related]
27. Enhanced Hydrolysis of Li T; Zhong W; Jing C; Li X; Zhang T; Jiang C; Chen W Environ Sci Technol; 2020 Jul; 54(14):8658-8667. PubMed ID: 32545958 [TBL] [Abstract][Full Text] [Related]
28. Sorption of nonpolar neutral organic compounds to low-surface-area metal (hydr)oxide- and humic acid- coated model aquifer sands. Joo JC; Song MS; Kim JK J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):909-18. PubMed ID: 22423998 [TBL] [Abstract][Full Text] [Related]
29. Kinetics of silica nucleation on carboxyl- and amine-terminated surfaces: insights for biomineralization. Wallace AF; DeYoreo JJ; Dove PM J Am Chem Soc; 2009 Apr; 131(14):5244-50. PubMed ID: 19301812 [TBL] [Abstract][Full Text] [Related]
30. Mechanistic investigation and modeling of Cd immobilization by iron (hydr)oxide-humic acid coprecipitates. Qu C; Fein JB; Chen W; Ma M; Cai P; Huang Q J Hazard Mater; 2021 Oct; 420():126603. PubMed ID: 34329105 [TBL] [Abstract][Full Text] [Related]
31. A Nanoparticle-Based Model System for the Study of Heterogeneous Nucleation Phenomena. Göppert AK; González-Rubio G; Schnitzlein S; Cölfen H Langmuir; 2023 Mar; 39(10):3580-3588. PubMed ID: 36862982 [TBL] [Abstract][Full Text] [Related]
32. Analysis of Bacterial Deposition on Metal (Hydr)oxide-Coated Sand Filter Media. Truesdail SE; Lukasik J; Farrah SR; Shah DO; Dickinson RB J Colloid Interface Sci; 1998 Jul; 203(2):369-78. PubMed ID: 9705775 [TBL] [Abstract][Full Text] [Related]
33. Dissolved Organic Matter Affects Arsenic Mobility and Iron(III) (hydr)oxide Formation: Implications for Managed Aquifer Recharge. Wu X; Bowers B; Kim D; Lee B; Jun YS Environ Sci Technol; 2019 Dec; 53(24):14357-14367. PubMed ID: 31640342 [TBL] [Abstract][Full Text] [Related]
34. Influence of anisotropy on heterogeneous nucleation of gold nanorod assemblies. Göppert AK; González-Rubio G; Cölfen H Faraday Discuss; 2022 Jul; 235(0):132-147. PubMed ID: 35380134 [TBL] [Abstract][Full Text] [Related]
35. Humic acids restrict the transformation and the stabilization of Cd by iron (hydr)oxides. Qu C; Chen J; Mortimer M; Wu Y; Cai P; Huang Q J Hazard Mater; 2022 May; 430():128365. PubMed ID: 35150996 [TBL] [Abstract][Full Text] [Related]
36. Impact of iron/aluminum (hydr)oxide and clay minerals on heteroaggregation and transport of nanoplastics in aquatic environment. Nie X; Xing X; Xie R; Wang J; Yang S; Wan Q; Zeng EY J Hazard Mater; 2023 Mar; 446():130649. PubMed ID: 36587598 [TBL] [Abstract][Full Text] [Related]
37. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface. He X; Shen Y; Hung FR; Santiso EE J Chem Phys; 2016 Dec; 145(21):211919. PubMed ID: 28799378 [TBL] [Abstract][Full Text] [Related]
38. Nucleation of iron oxide nanoparticles mediated by Mms6 protein in situ. Kashyap S; Woehl TJ; Liu X; Mallapragada SK; Prozorov T ACS Nano; 2014 Sep; 8(9):9097-106. PubMed ID: 25162493 [TBL] [Abstract][Full Text] [Related]
39. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy. Wang L; Putnis CV Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501 [TBL] [Abstract][Full Text] [Related]
40. Process-Specific Effects of Sulfate on CaCO Zhu Y; Gao Z; Lee B; Jun YS Environ Sci Technol; 2022 Jun; 56(12):9063-9074. PubMed ID: 35617118 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]