These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37467860)

  • 1. Artificial intelligence and structural design of inorganic hollow fiber membranes: Materials chemistry.
    Mubashir M; Ahmad T; Liu X; Rehman LM; de Levay JBB; Al Nuaimi R; Thankamony R; Lai Z
    Chemosphere; 2023 Oct; 338():139525. PubMed ID: 37467860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and evaluation of elastomeric hollow fiber membranes as small diameter vascular graft substitutes.
    Mercado-Pagán ÁE; Kang Y; Findlay MW; Yang Y
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():541-548. PubMed ID: 25686982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionally coated polyethersulfone hollow fiber membranes: A substrate for enhanced HepG2/C3A functions.
    Verma SK; Modi A; Singh AK; Teotia R; Kadam S; Bellare J
    Colloids Surf B Biointerfaces; 2018 Apr; 164():358-369. PubMed ID: 29413617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophilic ZIF-8 decorated GO nanosheets improve biocompatibility and separation performance of polyethersulfone hollow fiber membranes: A potential membrane material for bioartificial liver application.
    Modi A; Verma SK; Bellare J
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():524-540. PubMed ID: 30033284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusive and convective transport through hollow fiber membranes for liver cell culture.
    Curcio E; De Bartolo L; Barbieri G; Rende M; Giorno L; Morelli S; Drioli E
    J Biotechnol; 2005 May; 117(3):309-21. PubMed ID: 15862362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of functional hollow fiber membranes modified with phospholipid polymers for application in total hemopurification system.
    Ye SH; Watanabe J; Takai M; Iwasaki Y; Ishihara K
    Biomaterials; 2005 Aug; 26(24):5032-41. PubMed ID: 15769539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient separation of biological macromolecular proteins by polyethersulfone hollow fiber ultrafiltration membranes modified with Fe
    Modi A; Bellare J
    Int J Biol Macromol; 2019 Aug; 135():798-807. PubMed ID: 31150674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene oxide nanosheets and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) doping improves biocompatibility and ultrafiltration in polyethersulfone hollow fiber membranes.
    Modi A; Verma SK; Bellare J
    J Colloid Interface Sci; 2017 Oct; 504():86-100. PubMed ID: 28527829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved hemodialysis with hemocompatible polyethersulfone hollow fiber membranes: In vitro performance.
    Verma SK; Modi A; Singh AK; Teotia R; Bellare J
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1286-1298. PubMed ID: 28636168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide-doping improves the biocompatibility and separation performance of polyethersulfone hollow fiber membranes for bioartificial kidney application.
    Modi A; Verma SK; Bellare J
    J Colloid Interface Sci; 2018 Mar; 514():750-759. PubMed ID: 29316531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel aerobic electrochemical membrane bioreactor with CNTs hollow fiber membrane by electrochemical oxidation to improve water quality and mitigate membrane fouling.
    Yang Y; Qiao S; Jin R; Zhou J; Quan X
    Water Res; 2019 Mar; 151():54-63. PubMed ID: 30594090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular matrix-coated polyethersulfone-TPGS hollow fiber membranes showing improved biocompatibility and uremic toxins removal for bioartificial kidney application.
    Modi A; Verma SK; Bellare J
    Colloids Surf B Biointerfaces; 2018 Jul; 167():457-467. PubMed ID: 29723817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Comparison of Prediction Models for Aerosol Filtration Efficiency Applied on a Hollow-Fiber Membrane Pore Structure.
    Bulejko P
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29921781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose acetate hollow fiber membranes blended with phospholipid polymer and their performance for hemopurification.
    Ye SH; Watanabe J; Ishihara K
    J Biomater Sci Polym Ed; 2004; 15(8):981-1001. PubMed ID: 15461185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels.
    Wen X; Tresco PA
    Biomaterials; 2006 Jul; 27(20):3800-9. PubMed ID: 16564567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of polycaprolactone urethane hollow fiber membranes as small diameter vascular grafts.
    Mercado-Pagán ÁE; Stahl AM; Ramseier ML; Behn AW; Yang Y
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():61-73. PubMed ID: 27127029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyethersulfone-carbon nanotubes composite hollow fiber membranes with improved biocompatibility for bioartificial liver.
    Verma SK; Modi A; Bellare J
    Colloids Surf B Biointerfaces; 2019 Sep; 181():890-895. PubMed ID: 31382337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Marangoni instability in fabrication of axially and internally grooved hollow fiber membranes.
    Yin J; Coutris N; Huang Y
    Langmuir; 2010 Nov; 26(22):16991-9. PubMed ID: 20923184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in Enhancing Hemocompatibility of Hemodialysis Hollow-Fiber Membranes.
    Ji H; Li Y; Su B; Zhao W; Kizhakkedathu JN; Zhao C
    Adv Fiber Mater; 2023 Apr; ():1-43. PubMed ID: 37361105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs.
    Ye SH; Arazawa DT; Zhu Y; Shankarraman V; Malkin AD; Kimmel JD; Gamble LJ; Ishihara K; Federspiel WJ; Wagner WR
    Langmuir; 2015 Mar; 31(8):2463-71. PubMed ID: 25669307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.