These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37467978)

  • 1. Simulating spatio-temporal dynamics of surface PM
    Chen D; Billmire M; Loughner CP; Bredder A; French NHF; Kim HC; Loboda TV
    Sci Total Environ; 2023 Nov; 898():165594. PubMed ID: 37467978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air Quality Data Approach for Defining Wildfire Influence: Impacts on PM
    Schneider SR; Lee K; Santos G; Abbatt JPD
    Environ Sci Technol; 2021 Oct; 55(20):13709-13717. PubMed ID: 34609856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Air pollution from wildfires and human health vulnerability in Alaskan communities under climate change.
    Woo SHL; Liu JC; Yue X; Mickley LJ; Bell ML
    Environ Res Lett; 2020 Sep; 15(9):. PubMed ID: 34413900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensemble-based deep learning for estimating PM
    Li L; Girguis M; Lurmann F; Pavlovic N; McClure C; Franklin M; Wu J; Oman LD; Breton C; Gilliland F; Habre R
    Environ Int; 2020 Dec; 145():106143. PubMed ID: 32980736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems.
    Chen Y; Hu FS; Lara MJ
    Glob Chang Biol; 2021 Feb; 27(3):652-663. PubMed ID: 33216446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury Pollution in the Arctic from Wildfires: Source Attribution for the 2000s.
    Kumar A; Wu S
    Environ Sci Technol; 2019 Oct; 53(19):11269-11275. PubMed ID: 31479246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season.
    Pavlovic R; Chen J; Anderson K; Moran MD; Beaulieu PA; Davignon D; Cousineau S
    J Air Waste Manag Assoc; 2016 Sep; 66(9):819-41. PubMed ID: 26934496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic.
    Abbott BW; Rocha AV; Shogren A; Zarnetske JP; Iannucci F; Bowden WB; Bratsman SP; Patch L; Watts R; Fulweber R; Frei RJ; Huebner AM; Ludwig SM; Carling GT; O'Donnell JA
    Glob Chang Biol; 2021 Apr; 27(7):1408-1430. PubMed ID: 33394532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal remote sensing of ecosystem change and causation across Alaska.
    Pastick NJ; Jorgenson MT; Goetz SJ; Jones BM; Wylie BK; Minsley BJ; Genet H; Knight JF; Swanson DK; Jorgenson JC
    Glob Chang Biol; 2019 Mar; 25(3):1171-1189. PubMed ID: 29808518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arctic and boreal paleofire records reveal drivers of fire activity and departures from Holocene variability.
    Hoecker TJ; Higuera PE; Kelly R; Hu FS
    Ecology; 2020 Sep; 101(9):e03096. PubMed ID: 32386341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of wildfires on air pollution and health across land use categories in Brazil over a 16-year period.
    Cobelo I; Castelhano FJ; Borge R; Roig HL; Adams M; Amini H; Koutrakis P; RĂ©quia WJ
    Environ Res; 2023 May; 224():115522. PubMed ID: 36813066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning-Based Integration of High-Resolution Wildfire Smoke Simulations and Observations for Regional Health Impact Assessment.
    Zou Y; O'Neill SM; Larkin NK; Alvarado EC; Solomon R; Mass C; Liu Y; Odman MT; Shen H
    Int J Environ Res Public Health; 2019 Jun; 16(12):. PubMed ID: 31212933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.
    Gustine DD; Brinkman TJ; Lindgren MA; Schmidt JI; Rupp TS; Adams LG
    PLoS One; 2014; 9(7):e100588. PubMed ID: 24991804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world.
    Dieleman CM; Rogers BM; Potter S; Veraverbeke S; Johnstone JF; Laflamme J; Solvik K; Walker XJ; Mack MC; Turetsky MR
    Glob Chang Biol; 2020 Nov; 26(11):6062-6079. PubMed ID: 32529727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the premature mortality and economic loss from wildfire-induced PM
    Pan S; Gan L; Jung J; Yu W; Roy A; Diao L; Jeon W; Souri AH; Gao HO; Choi Y
    Sci Total Environ; 2023 Jun; 875():162614. PubMed ID: 36871727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of pre-fire conifer density and wildfire severity on ecosystem structure and function at the forest-tundra ecotone.
    Walker XJ; Howard BK; Jean M; Johnstone JF; Roland C; Rogers BM; Schuur EAG; Solvik KK; Mack MC
    PLoS One; 2021; 16(10):e0258558. PubMed ID: 34710129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of pollutant emissions from wildfires in Mainland China.
    Jin Q; Wang W; Zheng W; Innes JL; Wang G; Guo F
    J Environ Manage; 2022 Sep; 318():115499. PubMed ID: 35717695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of wildfires on ozone exceptional events in the Western u.s.
    Jaffe DA; Wigder N; Downey N; Pfister G; Boynard A; Reid SB
    Environ Sci Technol; 2013 Oct; 47(19):11065-72. PubMed ID: 23980897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Health impact analysis of PM
    Matz CJ; Egyed M; Xi G; Racine J; Pavlovic R; Rittmaster R; Henderson SB; Stieb DM
    Sci Total Environ; 2020 Jul; 725():138506. PubMed ID: 32302851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting hourly PM
    Yu M; Masrur A; Blaszczak-Boxe C
    Sci Total Environ; 2023 Feb; 860():160446. PubMed ID: 36436649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.